Difference between revisions of "Homogeneous operator"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | h0476801.png | ||
| + | $#A+1 = 22 n = 0 | ||
| + | $#C+1 = 22 : ~/encyclopedia/old_files/data/H047/H.0407680 Homogeneous operator | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | A mapping $ A $ | |
| + | of a vector space $ X $ | ||
| + | into a vector space $ Y $ | ||
| + | such that there exists a symmetric [[Multilinear mapping|multilinear mapping]] | ||
| − | + | $$ | |
| + | B : X \times \dots \times X \rightarrow Y | ||
| + | $$ | ||
| + | |||
| + | with $ B ( x \dots x ) = A ( x) $. | ||
| + | The number $ n $ | ||
| + | of variables $ x $ | ||
| + | is called the degree of the homogeneous operator $ A $. | ||
| + | A linear operator $ L : X \rightarrow Y $ | ||
| + | is a homogeneous operator of degree 1 (usually just called homogeneous). One writes $ x ^ {n} $ | ||
| + | instead of $ ( x \dots x ) $ | ||
| + | for short, meaning by this the element of $ X \times \dots \times X $ | ||
| + | with all coordinates equal, but not a power of an element — a concept that is not defined in an arbitrary vector space. If $ A $ | ||
| + | is a homogeneous operator of degree $ n $, | ||
| + | then | ||
| + | |||
| + | $$ | ||
| + | A ( tx ) = t ^ {n} A ( x) . | ||
| + | $$ | ||
More generally: | More generally: | ||
| − | + | $$ | |
| + | A ( t _ {1} x _ {1} + \dots + t _ {k} x _ {k} ) = | ||
| + | $$ | ||
| + | |||
| + | $$ | ||
| + | = \ | ||
| + | \sum _ {\begin{array}{c} | ||
| + | n _ {1} + \dots + n _ {k} = n \\ | ||
| + | n _ {i} \geq 0 | ||
| + | \end{array} | ||
| + | } | ||
| + | \frac{n ! }{n _ {1} ! \dots n _ {k} ! } | ||
| − | + | t _ {1} ^ {n _ {1} } \dots t _ {k} ^ {n _ {k} } B ( | |
| + | x _ {1} ^ {n _ {1} } \dots x _ {k} ^ {n _ {k} } ) . | ||
| + | $$ | ||
| − | If | + | If $ X $ |
| + | and $ Y $ | ||
| + | are normed vector spaces, then $ A $ | ||
| + | is continuous if and only if it is bounded, and if $ A $ | ||
| + | is continuous at zero it is continuous on the whole of $ X $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.A. Lyusternik, V.I. Sobolev, "Elements of functional analysis" , Hindushtan Publ. Comp. (1974) (Translated from Russian)</TD></TR><TR><TD valign="top">[2a]</TD> <TD valign="top"> H. Cartan, "Calcul différentiel" , Hermann (1967)</TD></TR><TR><TD valign="top">[2b]</TD> <TD valign="top"> H. Cartan, "Differential forms" , Kershaw (1983) (Translated from French)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.A. Lyusternik, V.I. Sobolev, "Elements of functional analysis" , Hindushtan Publ. Comp. (1974) (Translated from Russian)</TD></TR><TR><TD valign="top">[2a]</TD> <TD valign="top"> H. Cartan, "Calcul différentiel" , Hermann (1967)</TD></TR><TR><TD valign="top">[2b]</TD> <TD valign="top"> H. Cartan, "Differential forms" , Kershaw (1983) (Translated from French)</TD></TR></table> | ||
Latest revision as of 22:10, 5 June 2020
A mapping $ A $
of a vector space $ X $
into a vector space $ Y $
such that there exists a symmetric multilinear mapping
$$ B : X \times \dots \times X \rightarrow Y $$
with $ B ( x \dots x ) = A ( x) $. The number $ n $ of variables $ x $ is called the degree of the homogeneous operator $ A $. A linear operator $ L : X \rightarrow Y $ is a homogeneous operator of degree 1 (usually just called homogeneous). One writes $ x ^ {n} $ instead of $ ( x \dots x ) $ for short, meaning by this the element of $ X \times \dots \times X $ with all coordinates equal, but not a power of an element — a concept that is not defined in an arbitrary vector space. If $ A $ is a homogeneous operator of degree $ n $, then
$$ A ( tx ) = t ^ {n} A ( x) . $$
More generally:
$$ A ( t _ {1} x _ {1} + \dots + t _ {k} x _ {k} ) = $$
$$ = \ \sum _ {\begin{array}{c} n _ {1} + \dots + n _ {k} = n \\ n _ {i} \geq 0 \end{array} } \frac{n ! }{n _ {1} ! \dots n _ {k} ! } t _ {1} ^ {n _ {1} } \dots t _ {k} ^ {n _ {k} } B ( x _ {1} ^ {n _ {1} } \dots x _ {k} ^ {n _ {k} } ) . $$
If $ X $ and $ Y $ are normed vector spaces, then $ A $ is continuous if and only if it is bounded, and if $ A $ is continuous at zero it is continuous on the whole of $ X $.
References
| [1] | L.A. Lyusternik, V.I. Sobolev, "Elements of functional analysis" , Hindushtan Publ. Comp. (1974) (Translated from Russian) |
| [2a] | H. Cartan, "Calcul différentiel" , Hermann (1967) |
| [2b] | H. Cartan, "Differential forms" , Kershaw (1983) (Translated from French) |
Homogeneous operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Homogeneous_operator&oldid=15866