Difference between revisions of "Harmonic majorant"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | h0464801.png | ||
| + | $#A+1 = 34 n = 0 | ||
| + | $#C+1 = 34 : ~/encyclopedia/old_files/data/H046/H.0406480 Harmonic majorant, | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | ''least harmonic majorant $ v $ | |
| + | of a family $ \{ u _ {i} \} $'' | ||
| − | The | + | The lower envelope of the family $ \mathfrak B = \{ v _ {k} \} $ |
| + | of all superharmonic majorants $ v _ {k} $ | ||
| + | of the family $ \{ u _ {i} \} $ | ||
| + | of subharmonic functions on an open set $ D $ | ||
| + | of a Euclidean space $ \mathbf R ^ {n} $, | ||
| + | $ n \geq 2 $, | ||
| + | i.e. | ||
| − | + | $$ | |
| + | v ( x) = \inf \{ {v _ {k} ( x) } : { | ||
| + | v _ {k} \in \mathfrak B } \} | ||
| + | ,\ \ | ||
| + | x \in D. | ||
| + | $$ | ||
| − | + | The least harmonic majorant $ v $ | |
| + | is either a harmonic function or $ v ( x) \equiv + \infty $ | ||
| + | on $ D $. | ||
| + | If the family consists of a single function $ u $ | ||
| + | which is subharmonic on a larger set $ D _ {0} \supset \overline{D}\; $, | ||
| + | the concept of the best harmonic majorant $ v ^ {*} $— | ||
| + | the solution of the generalized Dirichlet problem for $ D $ | ||
| + | with value $ u $ | ||
| + | on the boundary $ \Gamma = \partial D $— | ||
| + | may be employed. Always $ v ^ {*} - v \geq 0 $, | ||
| + | and the following formula [[#References|[1]]] is valid: | ||
| − | + | $$ | |
| + | v ^ {*} ( x) - v ( x) = \ | ||
| + | - \int\limits _ \Gamma G ( x, y) d \mu ( y),\ \ | ||
| + | x \in D, | ||
| + | $$ | ||
| + | |||
| + | where $ \mu $ | ||
| + | is the measure which is associated with $ u $, | ||
| + | $ \mu \leq 0 $, | ||
| + | and $ G( x, y) $ | ||
| + | is the (generalized) Green function of the Dirichlet problem for $ D $. | ||
| + | The best and the least harmonic majorants coincide if and only if the set of all irregular points (cf. [[Irregular boundary point|Irregular boundary point]]) of $ \Gamma $ | ||
| + | has $ \mu $- | ||
| + | measure zero. | ||
| + | |||
| + | Correspondingly, if $ \{ \widetilde{u} _ {i} \} $ | ||
| + | is a family of superharmonic functions on $ D $, | ||
| + | the greatest harmonic minorant $ w $ | ||
| + | of the family $ \{ \widetilde{u} _ {i} \} $ | ||
| + | is defined as the upper envelope of the family of all subharmonic minorants of $ \{ \widetilde{u} _ {i} \} $; | ||
| + | here $ - w $ | ||
| + | is the least harmonic majorant for $ \{ - \widetilde{u} _ {i} \} $. | ||
The problem of harmonic majorants may also be posed in terms of the Cauchy problem for the Laplace equation. See [[Harmonic function|Harmonic function]]. | The problem of harmonic majorants may also be posed in terms of the Cauchy problem for the Laplace equation. See [[Harmonic function|Harmonic function]]. | ||
| Line 17: | Line 68: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> O. Frostman, "Potentiel d'equilibre et capacité des ensembles avec quelques applications à la théorie des fonctions" ''Mett. Lunds Univ. Mat. Sem.'' , '''3''' (1935) pp. 1–118</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1959)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> O. Frostman, "Potentiel d'equilibre et capacité des ensembles avec quelques applications à la théorie des fonctions" ''Mett. Lunds Univ. Mat. Sem.'' , '''3''' (1935) pp. 1–118</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1959)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
Revision as of 19:43, 5 June 2020
least harmonic majorant $ v $
of a family $ \{ u _ {i} \} $
The lower envelope of the family $ \mathfrak B = \{ v _ {k} \} $ of all superharmonic majorants $ v _ {k} $ of the family $ \{ u _ {i} \} $ of subharmonic functions on an open set $ D $ of a Euclidean space $ \mathbf R ^ {n} $, $ n \geq 2 $, i.e.
$$ v ( x) = \inf \{ {v _ {k} ( x) } : { v _ {k} \in \mathfrak B } \} ,\ \ x \in D. $$
The least harmonic majorant $ v $ is either a harmonic function or $ v ( x) \equiv + \infty $ on $ D $. If the family consists of a single function $ u $ which is subharmonic on a larger set $ D _ {0} \supset \overline{D}\; $, the concept of the best harmonic majorant $ v ^ {*} $— the solution of the generalized Dirichlet problem for $ D $ with value $ u $ on the boundary $ \Gamma = \partial D $— may be employed. Always $ v ^ {*} - v \geq 0 $, and the following formula [1] is valid:
$$ v ^ {*} ( x) - v ( x) = \ - \int\limits _ \Gamma G ( x, y) d \mu ( y),\ \ x \in D, $$
where $ \mu $ is the measure which is associated with $ u $, $ \mu \leq 0 $, and $ G( x, y) $ is the (generalized) Green function of the Dirichlet problem for $ D $. The best and the least harmonic majorants coincide if and only if the set of all irregular points (cf. Irregular boundary point) of $ \Gamma $ has $ \mu $- measure zero.
Correspondingly, if $ \{ \widetilde{u} _ {i} \} $ is a family of superharmonic functions on $ D $, the greatest harmonic minorant $ w $ of the family $ \{ \widetilde{u} _ {i} \} $ is defined as the upper envelope of the family of all subharmonic minorants of $ \{ \widetilde{u} _ {i} \} $; here $ - w $ is the least harmonic majorant for $ \{ - \widetilde{u} _ {i} \} $.
The problem of harmonic majorants may also be posed in terms of the Cauchy problem for the Laplace equation. See Harmonic function.
References
| [1] | O. Frostman, "Potentiel d'equilibre et capacité des ensembles avec quelques applications à la théorie des fonctions" Mett. Lunds Univ. Mat. Sem. , 3 (1935) pp. 1–118 |
| [2] | M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1959) |
Comments
In axiomatic potential theory (cf. Potential theory, abstract) the equality of the best and the least harmonic majorant is connected to the domination principle (cf. Domination), see [a1], Chapt. 9.
References
| [a1] | C. Constantinescu, A. Cornea, "Potential theory on harmonic spaces" , Springer (1972) |
Harmonic majorant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Harmonic_majorant&oldid=15227