|
|
Line 1: |
Line 1: |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g0439701.png" /> be a non-associative, commutative algebra of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g0439702.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g0439703.png" />.
| + | <!-- |
| + | g0439701.png |
| + | $#A+1 = 110 n = 0 |
| + | $#C+1 = 110 : ~/encyclopedia/old_files/data/G043/G.0403970 Genetic algebra |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | Let the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g0439704.png" /> be an algebraic extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g0439705.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g0439706.png" /> be the extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g0439707.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g0439708.png" /> (cf. also [[Extension of a field|Extension of a field]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g0439709.png" /> admit a basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397011.png" />, with [[structure constant]]s <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397012.png" />, defined by
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397013.png" /></td> </tr></table>
| + | Let $ A $ |
| + | be a non-associative, commutative algebra of dimension $ n + 1 $ |
| + | over a field $ K $. |
| + | |
| + | Let the field $ L $ |
| + | be an algebraic extension of $ K $, |
| + | and let $ A _ {L} $ |
| + | be the extension of $ A $ |
| + | over $ L $( |
| + | cf. also [[Extension of a field|Extension of a field]]). Let $ A _ {L} $ |
| + | admit a basis $ \{ c _ {0} , c _ {1} \dots c _ {n} \} $, |
| + | $ c _ {0} \in A $, |
| + | with [[structure constant]]s $ \lambda _ {ijk} $, |
| + | defined by |
| + | |
| + | $$ |
| + | c _ {i} c _ {j} = \ |
| + | \sum _ {k = 0 } ^ { n } \lambda _ {ijk} c _ {k} ,\ \ |
| + | i, j = 0 \dots n, |
| + | $$ |
| | | |
| which have the following properties: | | which have the following properties: |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397014.png" />, | + | $ \lambda _ {000} = 1 $, |
| + | |
| + | $ \lambda _ {0jk} = 0 $ |
| + | for $ k < j $, |
| + | $ j = 1 \dots n $; |
| + | $ k = 0 \dots n $, |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397015.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397017.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397018.png" />,
| + | $ \lambda _ {ijk} = 0 $ |
| + | for $ k \leq \max \{ i, j \} $, |
| + | $ i, j = 1 \dots n $; |
| + | $ k = 0 \dots n $. |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397019.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397021.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397022.png" />.
| + | Then $ A $ |
| + | is called a genetic algebra and $ \{ c _ {0} \dots c _ {n} \} $ |
| + | is called a canonical basis of $ A $. |
| + | The multiplication constants $ \lambda _ {0ii} $, |
| + | $ i = 0 \dots n $, |
| + | are invariants of a genetic algebra; they are called the ''train roots'' of $ A $. |
| | | |
− | Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397023.png" /> is called a genetic algebra and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397024.png" /> is called a canonical basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397025.png" />. The multiplication constants <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397027.png" />, are invariants of a genetic algebra; they are called the ''train roots'' of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397028.png" />.
| + | An algebra $ A $ |
| + | is called a [[baric algebra]] if there exists a non-trivial algebra homomorphism $ \omega : A \rightarrow K $; |
| + | $ \omega $ |
| + | is called a weight homomorphism or simply a weight. Every genetic algebra $ A $ |
| + | is baric with $ \omega : A \rightarrow K $ |
| + | defined by $ \omega ( c _ {0} ) = 1 $, |
| + | $ \omega ( c _ {i} ) = 0 $, |
| + | $ i = 1 \dots n $; |
| + | and $ \mathop{\rm ker} \omega $ |
| + | is an $ n $- |
| + | dimensional ideal of $ A $. |
| | | |
− | An algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397029.png" /> is called a [[baric algebra]] if there exists a non-trivial algebra homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397030.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397031.png" /> is called a weight homomorphism or simply a weight. Every genetic algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397032.png" /> is baric with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397033.png" /> defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397036.png" />; and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397037.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397038.png" />-dimensional ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397039.png" />.
| + | Let $ T ( A) $ |
| + | be the transformation algebra of the algebra $ A $, |
| + | i.e. the algebra generated by the (say) left transformations $ L _ {a} : A \rightarrow A $, |
| + | $ x \mapsto ax $, |
| + | $ a \in A $, |
| + | and the identity. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397040.png" /> be the transformation algebra of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397041.png" />, i.e. the algebra generated by the (say) left transformations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397042.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397043.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397044.png" />, and the identity.
| + | A non-associative, commutative algebra $ A $ |
| + | is a genetic algebra if and only if for every $ T \in T ( A) $, |
| + | $ T = f ( L _ {a _ {1} } \dots L _ {a _ {k} } ) $, |
| + | the coefficients of the characteristic polynomial are functions of $ \omega ( a _ {1} ) \dots \omega ( a _ {k} ) $ |
| + | only. |
| | | |
− | A non-associative, commutative algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397045.png" /> is a genetic algebra if and only if for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397046.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397047.png" />, the coefficients of the characteristic polynomial are functions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397048.png" /> only.
| + | Historically, genetic algebras were first defined by this property (R.D. Schafer [[#References|[a5]]]). H. Gonshor [[#References|[a3]]] proved the equivalence with the first definition above. P. Holgate [[#References|[a4]]] proved that in a baric algebra $ A $ |
| + | the weight $ \omega $ |
| + | is uniquely determined if $ \mathop{\rm ker} \omega $ |
| + | is a nil ideal. |
| | | |
− | Historically, genetic algebras were first defined by this property (R.D. Schafer [[#References|[a5]]]). H. Gonshor [[#References|[a3]]] proved the equivalence with the first definition above. P. Holgate [[#References|[a4]]] proved that in a baric algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397049.png" /> the weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397050.png" /> is uniquely determined if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397051.png" /> is a nil ideal.
| + | Algebras in genetics originate from the work of I.M.H. Etherington [[#References|[a2]]], who put the Mendelian laws into an algebraic form. Consider an infinitely large, random mating population of diploid (or $ 2r $- |
| + | ploid) individuals which differ genetically at one or several loci. Let $ a _ {0} \dots a _ {n} $ |
| + | be the genetically different gametes. The state of the population can be described by the vector $ ( \alpha _ {0} \dots \alpha _ {n} ) $ |
| + | of frequencies of gametes, |
| | | |
− | Algebras in genetics originate from the work of I.M.H. Etherington [[#References|[a2]]], who put the Mendelian laws into an algebraic form. Consider an infinitely large, random mating population of diploid (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397052.png" />-ploid) individuals which differ genetically at one or several loci. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397053.png" /> be the genetically different gametes. The state of the population can be described by the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397054.png" /> of frequencies of gametes,
| + | $$ |
| + | 0 \leq \alpha _ {i} \leq 1,\ \ |
| + | i = 0 \dots n; \ \ |
| + | \sum _ {i = 0 } ^ { n } |
| + | \alpha _ {i} = 1. |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397055.png" /></td> </tr></table>
| + | By random union of gametes $ a _ {i} $ |
| + | and $ a _ {j} $, |
| + | zygotes $ a _ {i} a _ {j} $ |
| + | are formed, $ i, j = 0 \dots n $. |
| + | In the absence of selection all zygotes have the same fertility. Let $ \gamma _ {ijk} $ |
| + | be the relative frequency of gametes $ a _ {k} $, |
| + | $ k = 0 \dots n $, |
| + | produced by a zygote $ a _ {i} a _ {j} $, |
| + | $ i, j = 0 \dots n $, |
| | | |
− | By random union of gametes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397056.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397057.png" />, zygotes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397058.png" /> are formed, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397059.png" />. In the absence of selection all zygotes have the same fertility. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397060.png" /> be the relative frequency of gametes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397061.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397062.png" />, produced by a zygote <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397063.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397064.png" />,
| + | $$ \tag{a1 } |
| + | \left . \begin{array}{c} |
| + | 0 \leq \gamma _ {ijk} \leq 1,\ \ |
| + | i, j, k = 0 \dots n; |
| + | \\ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397065.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
| + | \sum _ {k = 0 } ^ { n } |
| + | \gamma _ {ijk} = 1,\ \ |
| + | i, j = 0 \dots n. |
| + | \end{array} |
| + | \right \} |
| + | $$ |
| | | |
− | Let the segregation rates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397066.png" /> be symmetric, i.e. | + | Let the segregation rates $ \gamma _ {ijk} $ |
| + | be symmetric, i.e. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397067.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
| + | $$ \tag{a2 } |
| + | \gamma _ {ijk} = \gamma _ {jik} ,\ \ |
| + | i, j, k = 0 \dots n. |
| + | $$ |
| | | |
− | Consider the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397068.png" /> as abstract elements which are free over the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397069.png" />. In the vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397070.png" /> a multiplication is defined by | + | Consider the elements $ a _ {0} \dots a _ {n} $ |
| + | as abstract elements which are free over the field $ \mathbf R $. |
| + | In the vector space $ V = \{ {\sum _ {i = 0 } ^ {n} \alpha _ {i} a _ {i} } : {\alpha _ {i} \in \mathbf R , i = 0 \dots n } \} $ |
| + | a multiplication is defined by |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397071.png" /></td> </tr></table>
| + | $$ |
| + | a _ {i} a _ {j} = \ |
| + | \sum _ {k = 0 } ^ { n } |
| + | \gamma _ {ijk} a _ {k} ,\ \ |
| + | i, j = 0 \dots n, |
| + | $$ |
| | | |
− | and its bilinear extension onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397072.png" />. Thereby <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397073.png" /> becomes a commutative algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397074.png" />, the gametic algebra. Actual populations correspond to elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397075.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397076.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397077.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397078.png" />. Random union of populations corresponds to multiplication of the corresponding elements in the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397079.png" />. Under rather general assumptions (including mutation, crossing over, polyploidy) gametic algebras are genetic algebras. Examples can be found in [[#References|[a2]]] or [[#References|[a7]]]. | + | and its bilinear extension onto $ V \times V $. |
| + | Thereby $ V $ |
| + | becomes a commutative algebra $ G $, |
| + | the gametic algebra. Actual populations correspond to elements $ a = \sum _ {i = 0 } ^ {n} \alpha _ {i} a _ {i} \in G $ |
| + | with $ 0 \leq \alpha _ {i} \leq 1 $, |
| + | $ i = 0 \dots n $, |
| + | and $ \sum _ {i = 0 } ^ {n} \alpha _ {i} = 1 $. |
| + | Random union of populations corresponds to multiplication of the corresponding elements in the algebra $ G $. |
| + | Under rather general assumptions (including mutation, crossing over, polyploidy) gametic algebras are genetic algebras. Examples can be found in [[#References|[a2]]] or [[#References|[a7]]]. |
| | | |
− | The zygotic algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397080.png" /> is obtained from the gametic algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397081.png" /> by duplication, i.e. as the symmetric tensor product of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397082.png" /> with itself: | + | The zygotic algebra $ Z $ |
| + | is obtained from the gametic algebra $ G $ |
| + | by duplication, i.e. as the symmetric tensor product of $ G $ |
| + | with itself: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397083.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a3)</td></tr></table>
| + | $$ \tag{a3 } |
| + | Z = G \otimes G/J, |
| + | $$ |
| | | |
| where | | where |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397084.png" /></td> </tr></table>
| + | $$ |
| + | J : = \left \{ { |
| + | \sum _ {i \in I } |
| + | ( x _ {i} \otimes y _ {i} - y _ {i} \otimes x _ {i} ) } : { |
| + | x _ {i} , y _ {i} \in G,\ |
| + | i \in I,\ |
| + | | I | < \infty |
| + | } \right \} |
| + | . |
| + | $$ |
| | | |
− | The zygotic algebra describes the evolution of a population of diploid (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397085.png" />-ploid) individuals under random mating. | + | The zygotic algebra describes the evolution of a population of diploid ( $ 2r $- |
| + | ploid) individuals under random mating. |
| | | |
− | A baric algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397086.png" /> with weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397087.png" /> is called a train algebra if the coefficients of the rank polynomial of all principal powers of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397088.png" /> depend only on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397089.png" />, i.e. if this polynomial has the form | + | A baric algebra $ A $ |
| + | with weight $ \omega $ |
| + | is called a train algebra if the coefficients of the rank polynomial of all principal powers of $ x $ |
| + | depend only on $ \omega ( x) $, |
| + | i.e. if this polynomial has the form |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397090.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a4)</td></tr></table>
| + | $$ \tag{a4 } |
| + | x ^ {r} + |
| + | \beta _ {1} \omega ( x) |
| + | x ^ {r - 1 } + \dots + |
| + | \beta _ {r - 1 } |
| + | \omega ^ {r - 1 } ( x) |
| + | x = 0. |
| + | $$ |
| | | |
− | A baric algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397091.png" /> with weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397092.png" /> is called a special train algebra if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397093.png" /> is nilpotent and the principal powers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397094.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397095.png" />, are ideals of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397096.png" />, cf. [[#References|[a2]]]. Etherington [[#References|[a2]]] proved that every special train algebra is a train algebra. Schafer [[#References|[a5]]] showed that every special train algebra is a genetic algebra and that every genetic algebra is a train algebra. Further characterizations of these algebras can be found in [[#References|[a7]]], Chapts. 3, 4. | + | A baric algebra $ A $ |
| + | with weight $ \omega $ |
| + | is called a special train algebra if $ N = \mathop{\rm ker} \omega $ |
| + | is nilpotent and the principal powers $ N ^ {i} $, |
| + | $ i \in N $, |
| + | are ideals of $ A $, |
| + | cf. [[#References|[a2]]]. Etherington [[#References|[a2]]] proved that every special train algebra is a train algebra. Schafer [[#References|[a5]]] showed that every special train algebra is a genetic algebra and that every genetic algebra is a train algebra. Further characterizations of these algebras can be found in [[#References|[a7]]], Chapts. 3, 4. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397097.png" /> be a baric algebra with weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397098.png" />. If all elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397099.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g043970100.png" /> satisfy the identity | + | Let $ A $ |
| + | be a baric algebra with weight $ \omega $. |
| + | If all elements $ x $ |
| + | of $ A $ |
| + | satisfy the identity |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g043970101.png" /></td> </tr></table>
| + | $$ |
| + | x ^ {2} x ^ {2} = \ |
| + | \omega ^ {2} ( x) x ^ {2} , |
| + | $$ |
| | | |
− | then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g043970102.png" /> is called a [[Bernstein algebra]]. Every Bernstein algebra possesses an idempotent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g043970103.png" />. The decomposition with respect to this idempotent reads | + | then $ A $ |
| + | is called a [[Bernstein algebra]]. Every Bernstein algebra possesses an idempotent $ e $. |
| + | The decomposition with respect to this idempotent reads |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g043970104.png" /></td> </tr></table>
| + | $$ |
| + | A = E \oplus U \oplus V, |
| + | $$ |
| | | |
| where | | where |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g043970105.png" /></td> </tr></table>
| + | $$ |
| + | E = e \cdot K,\ \ |
| + | \left . U = \mathop{\rm Im} L _ {e} \right | _ {N} ,\ \ |
| + | V = \mathop{\rm ker} L _ {e} . |
| + | $$ |
| | | |
− | The integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g043970106.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g043970107.png" /> are invariants of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g043970108.png" />, the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g043970109.png" /> is called the type of the Bernstein algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g043970110.png" />, cf. [[#References|[a7]]], Chapt. 9. In [[#References|[a6]]] necessary and sufficient conditions have been given for a Bernstein algebra to be a [[Jordan algebra|Jordan algebra]]. | + | The integers $ p = \mathop{\rm dim} U $ |
| + | and $ q = \mathop{\rm dim} V $ |
| + | are invariants of $ A $, |
| + | the pair $ ( p + 1 , q) $ |
| + | is called the type of the Bernstein algebra $ A $, |
| + | cf. [[#References|[a7]]], Chapt. 9. In [[#References|[a6]]] necessary and sufficient conditions have been given for a Bernstein algebra to be a [[Jordan algebra|Jordan algebra]]. |
| | | |
| Bernstein algebras were introduced by S. Bernstein [[#References|[a1]]] as a generalization of the [[Hardy–Weinberg law]], which states that a randomly mating population is in equilibrium after one generation. | | Bernstein algebras were introduced by S. Bernstein [[#References|[a1]]] as a generalization of the [[Hardy–Weinberg law]], which states that a randomly mating population is in equilibrium after one generation. |
Let $ A $
be a non-associative, commutative algebra of dimension $ n + 1 $
over a field $ K $.
Let the field $ L $
be an algebraic extension of $ K $,
and let $ A _ {L} $
be the extension of $ A $
over $ L $(
cf. also Extension of a field). Let $ A _ {L} $
admit a basis $ \{ c _ {0} , c _ {1} \dots c _ {n} \} $,
$ c _ {0} \in A $,
with structure constants $ \lambda _ {ijk} $,
defined by
$$
c _ {i} c _ {j} = \
\sum _ {k = 0 } ^ { n } \lambda _ {ijk} c _ {k} ,\ \
i, j = 0 \dots n,
$$
which have the following properties:
$ \lambda _ {000} = 1 $,
$ \lambda _ {0jk} = 0 $
for $ k < j $,
$ j = 1 \dots n $;
$ k = 0 \dots n $,
$ \lambda _ {ijk} = 0 $
for $ k \leq \max \{ i, j \} $,
$ i, j = 1 \dots n $;
$ k = 0 \dots n $.
Then $ A $
is called a genetic algebra and $ \{ c _ {0} \dots c _ {n} \} $
is called a canonical basis of $ A $.
The multiplication constants $ \lambda _ {0ii} $,
$ i = 0 \dots n $,
are invariants of a genetic algebra; they are called the train roots of $ A $.
An algebra $ A $
is called a baric algebra if there exists a non-trivial algebra homomorphism $ \omega : A \rightarrow K $;
$ \omega $
is called a weight homomorphism or simply a weight. Every genetic algebra $ A $
is baric with $ \omega : A \rightarrow K $
defined by $ \omega ( c _ {0} ) = 1 $,
$ \omega ( c _ {i} ) = 0 $,
$ i = 1 \dots n $;
and $ \mathop{\rm ker} \omega $
is an $ n $-
dimensional ideal of $ A $.
Let $ T ( A) $
be the transformation algebra of the algebra $ A $,
i.e. the algebra generated by the (say) left transformations $ L _ {a} : A \rightarrow A $,
$ x \mapsto ax $,
$ a \in A $,
and the identity.
A non-associative, commutative algebra $ A $
is a genetic algebra if and only if for every $ T \in T ( A) $,
$ T = f ( L _ {a _ {1} } \dots L _ {a _ {k} } ) $,
the coefficients of the characteristic polynomial are functions of $ \omega ( a _ {1} ) \dots \omega ( a _ {k} ) $
only.
Historically, genetic algebras were first defined by this property (R.D. Schafer [a5]). H. Gonshor [a3] proved the equivalence with the first definition above. P. Holgate [a4] proved that in a baric algebra $ A $
the weight $ \omega $
is uniquely determined if $ \mathop{\rm ker} \omega $
is a nil ideal.
Algebras in genetics originate from the work of I.M.H. Etherington [a2], who put the Mendelian laws into an algebraic form. Consider an infinitely large, random mating population of diploid (or $ 2r $-
ploid) individuals which differ genetically at one or several loci. Let $ a _ {0} \dots a _ {n} $
be the genetically different gametes. The state of the population can be described by the vector $ ( \alpha _ {0} \dots \alpha _ {n} ) $
of frequencies of gametes,
$$
0 \leq \alpha _ {i} \leq 1,\ \
i = 0 \dots n; \ \
\sum _ {i = 0 } ^ { n }
\alpha _ {i} = 1.
$$
By random union of gametes $ a _ {i} $
and $ a _ {j} $,
zygotes $ a _ {i} a _ {j} $
are formed, $ i, j = 0 \dots n $.
In the absence of selection all zygotes have the same fertility. Let $ \gamma _ {ijk} $
be the relative frequency of gametes $ a _ {k} $,
$ k = 0 \dots n $,
produced by a zygote $ a _ {i} a _ {j} $,
$ i, j = 0 \dots n $,
$$ \tag{a1 }
\left . \begin{array}{c}
0 \leq \gamma _ {ijk} \leq 1,\ \
i, j, k = 0 \dots n;
\\
\sum _ {k = 0 } ^ { n }
\gamma _ {ijk} = 1,\ \
i, j = 0 \dots n.
\end{array}
\right \}
$$
Let the segregation rates $ \gamma _ {ijk} $
be symmetric, i.e.
$$ \tag{a2 }
\gamma _ {ijk} = \gamma _ {jik} ,\ \
i, j, k = 0 \dots n.
$$
Consider the elements $ a _ {0} \dots a _ {n} $
as abstract elements which are free over the field $ \mathbf R $.
In the vector space $ V = \{ {\sum _ {i = 0 } ^ {n} \alpha _ {i} a _ {i} } : {\alpha _ {i} \in \mathbf R , i = 0 \dots n } \} $
a multiplication is defined by
$$
a _ {i} a _ {j} = \
\sum _ {k = 0 } ^ { n }
\gamma _ {ijk} a _ {k} ,\ \
i, j = 0 \dots n,
$$
and its bilinear extension onto $ V \times V $.
Thereby $ V $
becomes a commutative algebra $ G $,
the gametic algebra. Actual populations correspond to elements $ a = \sum _ {i = 0 } ^ {n} \alpha _ {i} a _ {i} \in G $
with $ 0 \leq \alpha _ {i} \leq 1 $,
$ i = 0 \dots n $,
and $ \sum _ {i = 0 } ^ {n} \alpha _ {i} = 1 $.
Random union of populations corresponds to multiplication of the corresponding elements in the algebra $ G $.
Under rather general assumptions (including mutation, crossing over, polyploidy) gametic algebras are genetic algebras. Examples can be found in [a2] or [a7].
The zygotic algebra $ Z $
is obtained from the gametic algebra $ G $
by duplication, i.e. as the symmetric tensor product of $ G $
with itself:
$$ \tag{a3 }
Z = G \otimes G/J,
$$
where
$$
J : = \left \{ {
\sum _ {i \in I }
( x _ {i} \otimes y _ {i} - y _ {i} \otimes x _ {i} ) } : {
x _ {i} , y _ {i} \in G,\
i \in I,\
| I | < \infty
} \right \}
.
$$
The zygotic algebra describes the evolution of a population of diploid ( $ 2r $-
ploid) individuals under random mating.
A baric algebra $ A $
with weight $ \omega $
is called a train algebra if the coefficients of the rank polynomial of all principal powers of $ x $
depend only on $ \omega ( x) $,
i.e. if this polynomial has the form
$$ \tag{a4 }
x ^ {r} +
\beta _ {1} \omega ( x)
x ^ {r - 1 } + \dots +
\beta _ {r - 1 }
\omega ^ {r - 1 } ( x)
x = 0.
$$
A baric algebra $ A $
with weight $ \omega $
is called a special train algebra if $ N = \mathop{\rm ker} \omega $
is nilpotent and the principal powers $ N ^ {i} $,
$ i \in N $,
are ideals of $ A $,
cf. [a2]. Etherington [a2] proved that every special train algebra is a train algebra. Schafer [a5] showed that every special train algebra is a genetic algebra and that every genetic algebra is a train algebra. Further characterizations of these algebras can be found in [a7], Chapts. 3, 4.
Let $ A $
be a baric algebra with weight $ \omega $.
If all elements $ x $
of $ A $
satisfy the identity
$$
x ^ {2} x ^ {2} = \
\omega ^ {2} ( x) x ^ {2} ,
$$
then $ A $
is called a Bernstein algebra. Every Bernstein algebra possesses an idempotent $ e $.
The decomposition with respect to this idempotent reads
$$
A = E \oplus U \oplus V,
$$
where
$$
E = e \cdot K,\ \
\left . U = \mathop{\rm Im} L _ {e} \right | _ {N} ,\ \
V = \mathop{\rm ker} L _ {e} .
$$
The integers $ p = \mathop{\rm dim} U $
and $ q = \mathop{\rm dim} V $
are invariants of $ A $,
the pair $ ( p + 1 , q) $
is called the type of the Bernstein algebra $ A $,
cf. [a7], Chapt. 9. In [a6] necessary and sufficient conditions have been given for a Bernstein algebra to be a Jordan algebra.
Bernstein algebras were introduced by S. Bernstein [a1] as a generalization of the Hardy–Weinberg law, which states that a randomly mating population is in equilibrium after one generation.
References
[a1] | S. Bernstein, "Principe de stationarité et généralisation de la loi de Mendel" C.R. Acad. Sci. Paris , 177 (1923) pp. 581–584 |
[a2] | I.M.H. Etherington, "Genetic algebras" Proc. R. Soc. Edinburgh , 59 (1939) pp. 242–258 |
[a3] | H. Gonshor, "Contributions to genetic algebras" Proc. Edinburgh Math. Soc. (2) , 17 (1971) pp. 289–298 |
[a4] | P. Holgate, "Characterizations of genetic algebras" J. London Math. Soc. (2) , 6 (1972) pp. 169–174 |
[a5] | R.D. Schafer, "Structure of genetic algebras" Amer. J. Math. , 71 (1949) pp. 121–135 |
[a6] | S. Walcher, "Bernstein algebras which are Jordan algebras" Arch. Math. , 50 (1988) pp. 218–222 |
[a7] | A. Wörz-Busekros, "Algebras in genetics" , Lect. notes in biomath. , 36 , Springer (1980) |