Namespaces
Variants
Actions

Difference between revisions of "Gell-Mann-Dashen algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
 
Line 1: Line 1:
An infinite-dimensional [[Lie algebra|Lie algebra]] occurring in [[Quantum field theory|quantum field theory]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110100/g1101001.png" /> be a finite-dimensional Lie algebra and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110100/g1101002.png" /> the space of Schwartz test functions (cf. [[Generalized functions, space of|Generalized functions, space of]]). The Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110100/g1101003.png" /> is defined by
+
<!--
 +
g1101001.png
 +
$#A+1 = 17 n = 0
 +
$#C+1 = 17 : ~/encyclopedia/old_files/data/G110/G.1100100 Gell\AAnMann\ANDDashen algebra
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110100/g1101004.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
and can be interpreted as the Lie algebra of the group of gauge transformations (cf. [[Gauge transformation|Gauge transformation]]) [[#References|[a1]]]. Representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110100/g1101005.png" /> are called current algebras in [[Quantum field theory|quantum field theory]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110100/g1101006.png" /> be a homomorphism of Lie algebras and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110100/g1101007.png" /> be a basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110100/g1101008.png" /> with structure constants <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110100/g1101009.png" />. The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110100/g11010010.png" /> defines an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110100/g11010011.png" />-valued distribution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110100/g11010012.png" /> and it is true that
+
An infinite-dimensional [[Lie algebra|Lie algebra]] occurring in [[Quantum field theory|quantum field theory]]. Let $  {\widetilde{\mathfrak g}  } $
 +
be a finite-dimensional Lie algebra and $  {\mathcal S} ( \mathbf R  ^ {n} ) $
 +
the space of Schwartz test functions (cf. [[Generalized functions, space of|Generalized functions, space of]]). The Lie algebra  $  \mathfrak g = {\mathcal S} ( \mathbf R  ^ {n} ) \otimes {\widetilde{\mathfrak g}  } $
 +
is defined by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110100/g11010013.png" /></td> </tr></table>
+
$$
 +
[ f \otimes X,g \otimes Y ] = fg \otimes [ X,Y ]
 +
$$
  
Passing to the Fourier image one sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110100/g11010014.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110100/g11010015.png" />; then
+
and can be interpreted as the Lie algebra of the group of gauge transformations (cf. [[Gauge transformation|Gauge transformation]]) [[#References|[a1]]]. Representations of  $  \mathfrak g $
 +
are called current algebras in [[Quantum field theory|quantum field theory]]. Let  $  J : \mathfrak g \rightarrow \mathfrak h $
 +
be a homomorphism of Lie algebras and let  $  ( A _  \alpha  ) $
 +
be a basis of  $  {\widetilde{\mathfrak g}  } $
 +
with structure constants  $  c _ {\alpha \beta \gamma }  $.  
 +
The mapping  $  {\mathcal S} ( \mathbf R  ^ {n} ) \ni f \mapsto J ( f \otimes A _  \alpha  ) \in \mathfrak h $
 +
defines an  $  \mathfrak h $-
 +
valued distribution  $  J _  \alpha  ( x ) \in {\mathcal S}  ^  \prime  ( \mathbf R  ^ {n} ) \otimes \mathfrak h $
 +
and it is true that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110100/g11010016.png" /></td> </tr></table>
+
$$
 +
[ J _  \alpha  ( x ) ,J _  \beta  ( x  ^  \prime  ) ] = \delta ( x - x  ^  \prime  ) \sum _  \gamma  c _ {\alpha \beta \gamma }  J _  \gamma  ( x ) .
 +
$$
  
R. Dashen and M. Gell-Mann (1966) studied and applied the latter commutation relations in the particular case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110100/g11010017.png" />, [[#References|[a2]]].
+
Passing to the Fourier image one sets  $  { {J _  \alpha  } hat } ( k ) = J ( e ^ {ik \cdot x } \otimes A _  \alpha  ) $
 +
for  $  k \in \mathbf R  ^ {n} $;
 +
then
 +
 
 +
$$
 +
[ { {J _  \alpha  } hat } ( k ) , { {J _  \beta  } hat } ( k  ^  \prime  ) ] = \sum _  \gamma  c _ {\alpha \beta \gamma }  { {J _  \gamma  } hat } ( k + k  ^  \prime  ) .
 +
$$
 +
 
 +
R. Dashen and M. Gell-Mann (1966) studied and applied the latter commutation relations in the particular case when $  {\widetilde{\mathfrak g}  } = \mathfrak s \mathfrak u ( 3 ) \oplus \mathfrak s \mathfrak u ( 3 ) $,  
 +
[[#References|[a2]]].
  
 
General references for current algebras are [[#References|[a3]]], [[#References|[a4]]].
 
General references for current algebras are [[#References|[a3]]], [[#References|[a4]]].

Latest revision as of 19:41, 5 June 2020


An infinite-dimensional Lie algebra occurring in quantum field theory. Let $ {\widetilde{\mathfrak g} } $ be a finite-dimensional Lie algebra and $ {\mathcal S} ( \mathbf R ^ {n} ) $ the space of Schwartz test functions (cf. Generalized functions, space of). The Lie algebra $ \mathfrak g = {\mathcal S} ( \mathbf R ^ {n} ) \otimes {\widetilde{\mathfrak g} } $ is defined by

$$ [ f \otimes X,g \otimes Y ] = fg \otimes [ X,Y ] $$

and can be interpreted as the Lie algebra of the group of gauge transformations (cf. Gauge transformation) [a1]. Representations of $ \mathfrak g $ are called current algebras in quantum field theory. Let $ J : \mathfrak g \rightarrow \mathfrak h $ be a homomorphism of Lie algebras and let $ ( A _ \alpha ) $ be a basis of $ {\widetilde{\mathfrak g} } $ with structure constants $ c _ {\alpha \beta \gamma } $. The mapping $ {\mathcal S} ( \mathbf R ^ {n} ) \ni f \mapsto J ( f \otimes A _ \alpha ) \in \mathfrak h $ defines an $ \mathfrak h $- valued distribution $ J _ \alpha ( x ) \in {\mathcal S} ^ \prime ( \mathbf R ^ {n} ) \otimes \mathfrak h $ and it is true that

$$ [ J _ \alpha ( x ) ,J _ \beta ( x ^ \prime ) ] = \delta ( x - x ^ \prime ) \sum _ \gamma c _ {\alpha \beta \gamma } J _ \gamma ( x ) . $$

Passing to the Fourier image one sets $ { {J _ \alpha } hat } ( k ) = J ( e ^ {ik \cdot x } \otimes A _ \alpha ) $ for $ k \in \mathbf R ^ {n} $; then

$$ [ { {J _ \alpha } hat } ( k ) , { {J _ \beta } hat } ( k ^ \prime ) ] = \sum _ \gamma c _ {\alpha \beta \gamma } { {J _ \gamma } hat } ( k + k ^ \prime ) . $$

R. Dashen and M. Gell-Mann (1966) studied and applied the latter commutation relations in the particular case when $ {\widetilde{\mathfrak g} } = \mathfrak s \mathfrak u ( 3 ) \oplus \mathfrak s \mathfrak u ( 3 ) $, [a2].

General references for current algebras are [a3], [a4].

References

[a1] R. Hermann, "Lie algebras and quantum mechanics" , Benjamin (1970)
[a2] R. Dashen, M. Gell-Mann, "Representation of local current algebra at infinite momentum" Phys. Rev. Lett. , 17 (1966) pp. 340–343
[a3] S.L. Adler, R. Dashen, "Current algebras" , Benjamin (1968)
[a4] B. Renner, "Current algebras and their applications" , Pergamon (1968)
How to Cite This Entry:
Gell-Mann-Dashen algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gell-Mann-Dashen_algebra&oldid=22503
This article was adapted from an original article by P. Stovicek (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article