|
|
Line 1: |
Line 1: |
− | ''of a topological group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g0434301.png" />''
| + | <!-- |
| + | g0434301.png |
| + | $#A+1 = 115 n = 0 |
| + | $#C+1 = 115 : ~/encyclopedia/old_files/data/G043/G.0403430 Gauss decomposition |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A representation of an everywhere-dense subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g0434302.png" /> in the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g0434303.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g0434304.png" /> is an Abelian subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g0434305.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g0434306.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g0434307.png" /> are nilpotent groups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g0434308.png" />, normalized by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g0434309.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343010.png" /> is the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343011.png" /> of non-singular real matrices of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343013.png" /> is the subgroup of diagonal matrices, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343014.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343015.png" />) is the subgroup of lower-triangular (upper-triangular) matrices with unit elements on the principal diagonal, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343016.png" /> is the subset of matrices in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343017.png" /> whose principal minors are non-zero, then the decomposition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343018.png" /> is known as the Gauss decomposition of the general linear group and is directly connected with the [[Gauss method|Gauss method]] for the solution of systems of linear equations: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343019.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343022.png" />, is the non-singular coefficient matrix of the system of linear equations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343023.png" />, then it may be converted by the Gauss method into the triangular form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343024.png" /> by multiplying it from the left by the lower-triangular matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343026.png" />. A rigorous definition of the Gauss decomposition necessitates the introduction of the following terms. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343027.png" /> be a [[Topological group|topological group]], let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343028.png" /> be a subgroup of it, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343030.png" /> be nilpotent subgroups in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343031.png" />, normalized by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343032.png" />. The subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343033.png" /> is called a triangular truncation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343034.png" /> if: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343036.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343037.png" /> is the commutator subgroup of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343038.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343040.png" /> are connected solvable subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343041.png" />; and 2) the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343042.png" /> is everywhere dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343043.png" />, and the decomposition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343044.png" /> is unique. The decomposition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343045.png" /> is called a triangular decomposition in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343046.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343047.png" /> is an [[Abelian group|Abelian group]], this decomposition is called a completely-triangular decomposition or a Gauss decomposition. In such a case the subgroups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343048.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343049.png" /> are solvable. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343050.png" /> be an irreducible (continuous) representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343051.png" /> in a finite-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343052.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343053.png" /> be the subspace of all vectors in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343054.png" /> which are fixed with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343055.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343056.png" /> will then be invariant with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343057.png" />, while the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343058.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343059.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343060.png" /> will be irreducible. The representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343061.png" /> unambiguously defines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343062.png" />, up to an equivalence. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343063.png" /> also denote the representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343064.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343065.png" /> restricting to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343066.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343067.png" /> and being trivial on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343068.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343069.png" /> denote the representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343070.png" /> on the vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343071.png" /> induced by this <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343072.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343073.png" /> is contained (as an invariant part) in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343074.png" />, and the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343075.png" /> is one-dimensional. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343076.png" /> is an Abelian subgroup, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343077.png" /> is one-dimensional and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343078.png" /> is a character of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343079.png" />. The following examples of triangular decompositions of Lie groups are known. 1) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343080.png" /> be a reductive connected complex [[Lie group|Lie group]] with [[Cartan subalgebra|Cartan subalgebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343081.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343082.png" /> be a reductive connected subgroup in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343083.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343084.png" />. The subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343085.png" /> is then a triangular truncation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343086.png" />. 2) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343087.png" /> be a reductive connected linear Lie group; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343088.png" /> will then contain a triangular truncation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343089.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343090.png" /> is a simply-connected Abelian subgroup in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343091.png" /> (generated by the non-compact roots in the Lie algebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343092.png" />), and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343093.png" /> is the centralizer of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343094.png" /> in the maximal compact subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343095.png" />. 3) In particular, any reductive connected complex Lie group permits a Gauss decomposition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343096.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343097.png" /> is the Cartan subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343098.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343099.png" /> (respectively <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g043430100.png" />) is an analytic subgroup in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g043430101.png" /> whose Lie algebra is spanned by all root vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g043430102.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g043430103.png" /> (respectively <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g043430104.png" />), with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g043430105.png" /> denoting the roots with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g043430106.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g043430107.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g043430108.png" /> are opposite Borel subgroups (cf. [[Borel subgroup|Borel subgroup]]). In examples 1)–3) the subgroups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g043430109.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g043430110.png" /> are simply connected, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g043430111.png" /> is open in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g043430112.png" /> in the Zariski topology, while the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g043430113.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g043430114.png" />, is an isomorphism of algebraic varieties (and, in particular, a homeomorphism). This implies that the algebraic variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g043430115.png" /> is rational. | + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| + | ''of a topological group $ G $'' |
| + | |
| + | A representation of an everywhere-dense subset $ G _ {0} \subset G $ |
| + | in the form $ G _ {0} = NH N ^ {*} $, |
| + | where $ H $ |
| + | is an Abelian subgroup of $ G $, |
| + | and $ N $ |
| + | and $ N ^ {*} $ |
| + | are nilpotent groups of $ G $, |
| + | normalized by $ H $. |
| + | If $ G $ |
| + | is the group $ \mathop{\rm GL} ( m, \mathbf R ) $ |
| + | of non-singular real matrices of order $ m $, |
| + | $ H $ |
| + | is the subgroup of diagonal matrices, $ N $( |
| + | respectively, $ N ^ {*} $) |
| + | is the subgroup of lower-triangular (upper-triangular) matrices with unit elements on the principal diagonal, and $ G _ {0} $ |
| + | is the subset of matrices in $ G $ |
| + | whose principal minors are non-zero, then the decomposition $ G _ {0} = NH N ^ {*} $ |
| + | is known as the Gauss decomposition of the general linear group and is directly connected with the [[Gauss method|Gauss method]] for the solution of systems of linear equations: If $ g _ {0} = nh n ^ {*} $, |
| + | where $ n \in N $, |
| + | $ h \in H $, |
| + | $ n ^ {*} \in N ^ {*} $, |
| + | is the non-singular coefficient matrix of the system of linear equations $ g _ {0} x = b $, |
| + | then it may be converted by the Gauss method into the triangular form $ h n ^ {*} $ |
| + | by multiplying it from the left by the lower-triangular matrix $ n ^ {-} 1 $, |
| + | $ n \in N $. |
| + | A rigorous definition of the Gauss decomposition necessitates the introduction of the following terms. Let $ G $ |
| + | be a [[Topological group|topological group]], let $ H $ |
| + | be a subgroup of it, and let $ N $ |
| + | and $ N ^ {*} $ |
| + | be nilpotent subgroups in $ G $, |
| + | normalized by $ H $. |
| + | The subgroup $ H $ |
| + | is called a triangular truncation of $ G $ |
| + | if: 1) $ N \in D( R) $, |
| + | $ N ^ {*} \subset D( R ^ {*} ) $, |
| + | where $ D( X) $ |
| + | is the commutator subgroup of the group $ X $ |
| + | and $ R $ |
| + | and $ R ^ {*} $ |
| + | are connected solvable subgroups of $ G $; |
| + | and 2) the set $ G _ {0} = NH N ^ {*} $ |
| + | is everywhere dense in $ G $, |
| + | and the decomposition $ NH N ^ {*} $ |
| + | is unique. The decomposition $ G _ {0} = NH N ^ {*} $ |
| + | is called a triangular decomposition in $ G $. |
| + | If $ H $ |
| + | is an [[Abelian group|Abelian group]], this decomposition is called a completely-triangular decomposition or a Gauss decomposition. In such a case the subgroups $ B = NH = HN $, |
| + | $ B ^ {*} = N ^ {*} H = H N ^ {*} $ |
| + | are solvable. Let $ \pi $ |
| + | be an irreducible (continuous) representation of $ G $ |
| + | in a finite-dimensional vector space $ V $, |
| + | and let $ V _ {0} $ |
| + | be the subspace of all vectors in $ V $ |
| + | which are fixed with respect to $ N ^ {*} $; |
| + | $ V _ {0} $ |
| + | will then be invariant with respect to $ H $, |
| + | while the representation $ \alpha $ |
| + | of $ H $ |
| + | on $ V _ {0} $ |
| + | will be irreducible. The representation $ \alpha $ |
| + | unambiguously defines $ \pi $, |
| + | up to an equivalence. Let $ \alpha $ |
| + | also denote the representation of $ B $ |
| + | on $ V _ {0} $ |
| + | restricting to $ \alpha $ |
| + | on $ H $ |
| + | and being trivial on $ N $. |
| + | Let $ e ( \alpha ) $ |
| + | denote the representation of $ G $ |
| + | on the vector space $ C ( G , V _ {0} ) $ |
| + | induced by this $ \alpha $. |
| + | Then $ \pi $ |
| + | is contained (as an invariant part) in $ e ( \alpha ) $, |
| + | and the space $ \mathop{\rm Hom} _ {G} ( \pi , e( \alpha )) $ |
| + | is one-dimensional. If $ H $ |
| + | is an Abelian subgroup, then $ V _ {0} $ |
| + | is one-dimensional and $ \alpha $ |
| + | is a character of the group $ H $. |
| + | The following examples of triangular decompositions of Lie groups are known. 1) Let $ G $ |
| + | be a reductive connected complex [[Lie group|Lie group]] with [[Cartan subalgebra|Cartan subalgebra]] $ H _ {0} $ |
| + | and let $ H $ |
| + | be a reductive connected subgroup in $ G $ |
| + | containing $ H _ {0} $. |
| + | The subgroup $ H $ |
| + | is then a triangular truncation of $ G $. |
| + | 2) Let $ G $ |
| + | be a reductive connected linear Lie group; $ G $ |
| + | will then contain a triangular truncation $ H = MA $, |
| + | where $ A $ |
| + | is a simply-connected Abelian subgroup in $ G $( |
| + | generated by the non-compact roots in the Lie algebra of $ G $), |
| + | and $ M $ |
| + | is the centralizer of $ A $ |
| + | in the maximal compact subgroup $ K \subset G $. |
| + | 3) In particular, any reductive connected complex Lie group permits a Gauss decomposition $ G _ {0} = NH N ^ {*} $, |
| + | where $ H $ |
| + | is the Cartan subgroup of $ G $ |
| + | and $ N $( |
| + | respectively $ N ^ {*} $) |
| + | is an analytic subgroup in $ G $ |
| + | whose Lie algebra is spanned by all root vectors $ e _ \alpha $, |
| + | $ \alpha < 0 $( |
| + | respectively $ \alpha > 0 $), |
| + | with $ \alpha $ |
| + | denoting the roots with respect to $ H $, |
| + | i.e. $ HN $ |
| + | and $ H N ^ {*} $ |
| + | are opposite Borel subgroups (cf. [[Borel subgroup|Borel subgroup]]). In examples 1)–3) the subgroups $ N $ |
| + | and $ N ^ {*} $ |
| + | are simply connected, $ G _ {0} $ |
| + | is open in $ G $ |
| + | in the Zariski topology, while the mapping $ N \times H \times N ^ {*} $, |
| + | $ ( n, h, n ^ {*} ) \rightarrow nh n ^ {*} $, |
| + | is an isomorphism of algebraic varieties (and, in particular, a homeomorphism). This implies that the algebraic variety $ G $ |
| + | is rational. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> D.P. Zhelobenko, "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> D.P. Zhelobenko, "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian)</TD></TR></table> |
of a topological group $ G $
A representation of an everywhere-dense subset $ G _ {0} \subset G $
in the form $ G _ {0} = NH N ^ {*} $,
where $ H $
is an Abelian subgroup of $ G $,
and $ N $
and $ N ^ {*} $
are nilpotent groups of $ G $,
normalized by $ H $.
If $ G $
is the group $ \mathop{\rm GL} ( m, \mathbf R ) $
of non-singular real matrices of order $ m $,
$ H $
is the subgroup of diagonal matrices, $ N $(
respectively, $ N ^ {*} $)
is the subgroup of lower-triangular (upper-triangular) matrices with unit elements on the principal diagonal, and $ G _ {0} $
is the subset of matrices in $ G $
whose principal minors are non-zero, then the decomposition $ G _ {0} = NH N ^ {*} $
is known as the Gauss decomposition of the general linear group and is directly connected with the Gauss method for the solution of systems of linear equations: If $ g _ {0} = nh n ^ {*} $,
where $ n \in N $,
$ h \in H $,
$ n ^ {*} \in N ^ {*} $,
is the non-singular coefficient matrix of the system of linear equations $ g _ {0} x = b $,
then it may be converted by the Gauss method into the triangular form $ h n ^ {*} $
by multiplying it from the left by the lower-triangular matrix $ n ^ {-} 1 $,
$ n \in N $.
A rigorous definition of the Gauss decomposition necessitates the introduction of the following terms. Let $ G $
be a topological group, let $ H $
be a subgroup of it, and let $ N $
and $ N ^ {*} $
be nilpotent subgroups in $ G $,
normalized by $ H $.
The subgroup $ H $
is called a triangular truncation of $ G $
if: 1) $ N \in D( R) $,
$ N ^ {*} \subset D( R ^ {*} ) $,
where $ D( X) $
is the commutator subgroup of the group $ X $
and $ R $
and $ R ^ {*} $
are connected solvable subgroups of $ G $;
and 2) the set $ G _ {0} = NH N ^ {*} $
is everywhere dense in $ G $,
and the decomposition $ NH N ^ {*} $
is unique. The decomposition $ G _ {0} = NH N ^ {*} $
is called a triangular decomposition in $ G $.
If $ H $
is an Abelian group, this decomposition is called a completely-triangular decomposition or a Gauss decomposition. In such a case the subgroups $ B = NH = HN $,
$ B ^ {*} = N ^ {*} H = H N ^ {*} $
are solvable. Let $ \pi $
be an irreducible (continuous) representation of $ G $
in a finite-dimensional vector space $ V $,
and let $ V _ {0} $
be the subspace of all vectors in $ V $
which are fixed with respect to $ N ^ {*} $;
$ V _ {0} $
will then be invariant with respect to $ H $,
while the representation $ \alpha $
of $ H $
on $ V _ {0} $
will be irreducible. The representation $ \alpha $
unambiguously defines $ \pi $,
up to an equivalence. Let $ \alpha $
also denote the representation of $ B $
on $ V _ {0} $
restricting to $ \alpha $
on $ H $
and being trivial on $ N $.
Let $ e ( \alpha ) $
denote the representation of $ G $
on the vector space $ C ( G , V _ {0} ) $
induced by this $ \alpha $.
Then $ \pi $
is contained (as an invariant part) in $ e ( \alpha ) $,
and the space $ \mathop{\rm Hom} _ {G} ( \pi , e( \alpha )) $
is one-dimensional. If $ H $
is an Abelian subgroup, then $ V _ {0} $
is one-dimensional and $ \alpha $
is a character of the group $ H $.
The following examples of triangular decompositions of Lie groups are known. 1) Let $ G $
be a reductive connected complex Lie group with Cartan subalgebra $ H _ {0} $
and let $ H $
be a reductive connected subgroup in $ G $
containing $ H _ {0} $.
The subgroup $ H $
is then a triangular truncation of $ G $.
2) Let $ G $
be a reductive connected linear Lie group; $ G $
will then contain a triangular truncation $ H = MA $,
where $ A $
is a simply-connected Abelian subgroup in $ G $(
generated by the non-compact roots in the Lie algebra of $ G $),
and $ M $
is the centralizer of $ A $
in the maximal compact subgroup $ K \subset G $.
3) In particular, any reductive connected complex Lie group permits a Gauss decomposition $ G _ {0} = NH N ^ {*} $,
where $ H $
is the Cartan subgroup of $ G $
and $ N $(
respectively $ N ^ {*} $)
is an analytic subgroup in $ G $
whose Lie algebra is spanned by all root vectors $ e _ \alpha $,
$ \alpha < 0 $(
respectively $ \alpha > 0 $),
with $ \alpha $
denoting the roots with respect to $ H $,
i.e. $ HN $
and $ H N ^ {*} $
are opposite Borel subgroups (cf. Borel subgroup). In examples 1)–3) the subgroups $ N $
and $ N ^ {*} $
are simply connected, $ G _ {0} $
is open in $ G $
in the Zariski topology, while the mapping $ N \times H \times N ^ {*} $,
$ ( n, h, n ^ {*} ) \rightarrow nh n ^ {*} $,
is an isomorphism of algebraic varieties (and, in particular, a homeomorphism). This implies that the algebraic variety $ G $
is rational.
References
[1] | D.P. Zhelobenko, "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian) |