|
|
(3 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
− | ''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g1100502.png" />-invariant''
| + | <!-- |
| + | g1100502.png |
| + | $#A+1 = 63 n = 0 |
| + | $#C+1 = 63 : ~/encyclopedia/old_files/data/G110/G.1100050 Gamma\AAhinvariant in the theory of Abelian groups, |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | An invariant associated to an uncountable [[Abelian group|Abelian group]] and taking values in a [[Boolean algebra|Boolean algebra]]. Two groups with different invariants are non-isomorphic, but the converse fails in general: groups with the same invariant need not be isomorphic. The invariant is most commonly defined for almost-free groups (groups such that every subgroup of strictly smaller cardinality is free; see [[Free Abelian group|Free Abelian group]]). By a theorem of S. Shelah (see [[#References|[a7]]]), such a group is free if it is of singular cardinality, so the invariant is defined for groups of regular cardinality (see [[Cardinal number|Cardinal number]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g1100503.png" /> is an Abelian group of regular uncountable cardinality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g1100504.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g1100505.png" /> is said to be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g1100507.png" />-free if and only if every subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g1100508.png" /> of cardinality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g1100509.png" /> is free. In that case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005010.png" /> can be written as the union of a continuous chain (called a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005012.png" />-filtration) of free subgroups of cardinality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005013.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005014.png" />, where the continuity condition means that for every limit ordinal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005016.png" />. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005017.png" />-invariant of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005018.png" />, denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005019.png" /> or just <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005020.png" />, is defined to be the equivalence class, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005021.png" />, of
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005022.png" /></td> </tr></table>
| + | '' $ \Gamma $- |
| + | invariant'' |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005023.png" /> is defined to be the set of all subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005024.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005025.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005026.png" /> for some closed unbounded subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005027.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005028.png" />. (See [[Suslin hypothesis|Suslin hypothesis]] for the definitions of closed unbounded and stationary.) The equivalence class depends only on the isomorphism type of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005029.png" /> and not on the choice of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005030.png" />-filtration, because any two <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005031.png" />-filtrations agree on a closed unbounded subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005032.png" />; the equivalence classes of subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005033.png" /> form a [[Boolean algebra|Boolean algebra]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005034.png" />, under the partial order induced by inclusion. The least element of this Boolean algebra, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005035.png" />, is the class of all non-stationary subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005036.png" />. It can be proved that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005037.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005038.png" /> is free (see [[#References|[a1]]]). For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005039.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005040.png" />), every one of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005041.png" /> members of the Boolean algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005042.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005043.png" />-invariant of some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005044.png" />-free group of cardinality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005045.png" /> (see [[#References|[a6]]]). Assuming Gödel's axiom of constructibility, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005046.png" /> (see [[Gödel constructive set|Gödel constructive set]]), the same holds for all regular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005047.png" /> which are not too large (e.g., less than the first inaccessible cardinal, or even the first Mahlo cardinal); in fact, a complete characterization, for any regular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005048.png" />, of the range of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005049.png" /> can be given, assuming <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005050.png" /> (see [[#References|[a6]]] and [[#References|[a5]]]).
| + | An invariant associated to an uncountable [[Abelian group]] and taking values in a [[Boolean algebra]]. Two groups with different invariants are non-isomorphic, but the converse fails in general: groups with the same invariant need not be isomorphic. The invariant is most commonly defined for almost-free groups (groups such that every subgroup of strictly smaller cardinality is a [[free Abelian group]]). By a theorem of S. Shelah (see [[#References|[a7]]]), such a group is free if it is of [[singular cardinal]]ity, so the invariant is defined for groups of [[regular cardinal]]ity (see [[Cardinal number|Cardinal number]]). If $ A $ |
| + | is an Abelian group of regular uncountable cardinality $ \kappa $, |
| + | $ A $ |
| + | is said to be $ \kappa $- |
| + | free if and only if every subgroup of $ A $ |
| + | of cardinality $ < \kappa $ |
| + | is free. In that case $ A $ |
| + | can be written as the union of a continuous chain (called a $ \kappa $- |
| + | filtration) of free subgroups of cardinality $ < \kappa $: |
| + | $ A = \cup _ {\nu < \kappa } A _ \nu $, |
| + | where the continuity condition means that for every [[limit ordinal]] $ \nu < \kappa $, |
| + | $ A _ \nu = \cup _ {\mu < \nu } A _ \mu $. |
| + | The $ \Gamma $- |
| + | invariant of $ A $, |
| + | denoted by $ \Gamma _ \kappa ( A ) $ |
| + | or just $ \Gamma ( A ) $, |
| + | is defined to be the equivalence class, $ {\widetilde{S} } $, |
| + | of |
| | | |
− | Another <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005051.png" />-invariant can be defined for use in connection with the [[Whitehead problem|Whitehead problem]] in Abelian group theory, and its generalizations. In this case, for any Abelian groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005052.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005053.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005054.png" /> is defined to be the equivalence class of
| + | $$ |
| + | S = \left \{ {\nu < \kappa } : {\textrm{ for some } \tau > \nu, A _ \tau /A _ \nu \textrm{ is not free } } \right \} ; |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005055.png" /></td> </tr></table>
| + | $ {\widetilde{S} } $ |
| + | is defined to be the set of all subsets $ T $ |
| + | of $ \kappa $ |
| + | for which $ S \cap C = T \cap C $ |
| + | for some closed unbounded subset $ C $ |
| + | of $ \kappa $. |
| + | (See [[Suslin hypothesis|Suslin hypothesis]] for the definitions of closed unbounded and stationary.) The equivalence class depends only on the isomorphism type of $ A $ |
| + | and not on the choice of $ \kappa $- |
| + | filtration, because any two $ \kappa $- |
| + | filtrations agree on a closed unbounded subset of $ \kappa $; |
| + | the equivalence classes of subsets of $ \kappa $ |
| + | form a [[Boolean algebra|Boolean algebra]], $ D ( \kappa ) $, |
| + | under the partial order induced by inclusion. The least element of this Boolean algebra, $ 0 $, |
| + | is the class of all non-stationary subsets of $ \kappa $. |
| + | It can be proved that $ \Gamma ( A ) = 0 $ |
| + | if and only if $ A $ |
| + | is free (see [[#References|[a1]]]). For $ \kappa = \aleph _ {n + 1 } $( |
| + | $ n \in \omega $), |
| + | every one of the $ 2 ^ \kappa $ |
| + | members of the Boolean algebra $ D ( \kappa ) $ |
| + | is the $ \Gamma $- |
| + | invariant of some $ \kappa $- |
| + | free group of cardinality $ \kappa $( |
| + | see [[#References|[a6]]]). Assuming Gödel's [[axiom of constructibility]], $ V = L $( |
| + | see [[Gödel constructive set|Gödel constructive set]]), the same holds for all regular $ \kappa $ |
| + | which are not too large (e.g., less than the first [[inaccessible cardinal]], or even the first [[Mahlo cardinal]]); in fact, a complete characterization, for any regular $ \kappa $, |
| + | of the range of $ \Gamma $ |
| + | can be given, assuming $ V = L $( |
| + | see [[#References|[a6]]] and [[#References|[a5]]]). |
| | | |
− | when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005056.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005057.png" />-free of cardinality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005058.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005059.png" /> is written as the union, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005060.png" />, of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005061.png" />-filtration. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005062.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005063.png" />; the converse holds for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005064.png" /> of cardinality at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005065.png" />, assuming <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110050/g11005066.png" /> (see [[#References|[a2]]]).
| + | Another $ \Gamma $- |
| + | invariant can be defined for use in connection with the [[Whitehead problem|Whitehead problem]] in Abelian group theory, and its generalizations. In this case, for any Abelian groups $ A $ |
| + | and $ M $, |
| + | $ \Gamma _ {M} ( A ) $ |
| + | is defined to be the equivalence class of |
| + | |
| + | $$ |
| + | \left \{ {\nu < \kappa } : {\textrm{ for some } \tau > \nu, { \mathop{\rm Ext} } ( A _ \tau /A _ \nu , M ) \neq 0 } \right \} |
| + | $$ |
| + | |
| + | when $ A $ |
| + | is $ \kappa $- |
| + | free of cardinality $ \kappa $ |
| + | and $ A $ |
| + | is written as the union, $ \cup _ {\nu < \kappa } A _ \nu $, |
| + | of a $ \kappa $- |
| + | filtration. Then $ \Gamma _ {M} ( A ) = 0 $ |
| + | implies $ { \mathop{\rm Ext} } ( A, M ) = 0 $; |
| + | the converse holds for $ M $ |
| + | of cardinality at most $ \kappa $, |
| + | assuming $ V = L $( |
| + | see [[#References|[a2]]]). |
| | | |
| Useful references for additional information are [[#References|[a3]]] and [[#References|[a4]]]. | | Useful references for additional information are [[#References|[a3]]] and [[#References|[a4]]]. |
$ \Gamma $-
invariant
An invariant associated to an uncountable Abelian group and taking values in a Boolean algebra. Two groups with different invariants are non-isomorphic, but the converse fails in general: groups with the same invariant need not be isomorphic. The invariant is most commonly defined for almost-free groups (groups such that every subgroup of strictly smaller cardinality is a free Abelian group). By a theorem of S. Shelah (see [a7]), such a group is free if it is of singular cardinality, so the invariant is defined for groups of regular cardinality (see Cardinal number). If $ A $
is an Abelian group of regular uncountable cardinality $ \kappa $,
$ A $
is said to be $ \kappa $-
free if and only if every subgroup of $ A $
of cardinality $ < \kappa $
is free. In that case $ A $
can be written as the union of a continuous chain (called a $ \kappa $-
filtration) of free subgroups of cardinality $ < \kappa $:
$ A = \cup _ {\nu < \kappa } A _ \nu $,
where the continuity condition means that for every limit ordinal $ \nu < \kappa $,
$ A _ \nu = \cup _ {\mu < \nu } A _ \mu $.
The $ \Gamma $-
invariant of $ A $,
denoted by $ \Gamma _ \kappa ( A ) $
or just $ \Gamma ( A ) $,
is defined to be the equivalence class, $ {\widetilde{S} } $,
of
$$
S = \left \{ {\nu < \kappa } : {\textrm{ for some } \tau > \nu, A _ \tau /A _ \nu \textrm{ is not free } } \right \} ;
$$
$ {\widetilde{S} } $
is defined to be the set of all subsets $ T $
of $ \kappa $
for which $ S \cap C = T \cap C $
for some closed unbounded subset $ C $
of $ \kappa $.
(See Suslin hypothesis for the definitions of closed unbounded and stationary.) The equivalence class depends only on the isomorphism type of $ A $
and not on the choice of $ \kappa $-
filtration, because any two $ \kappa $-
filtrations agree on a closed unbounded subset of $ \kappa $;
the equivalence classes of subsets of $ \kappa $
form a Boolean algebra, $ D ( \kappa ) $,
under the partial order induced by inclusion. The least element of this Boolean algebra, $ 0 $,
is the class of all non-stationary subsets of $ \kappa $.
It can be proved that $ \Gamma ( A ) = 0 $
if and only if $ A $
is free (see [a1]). For $ \kappa = \aleph _ {n + 1 } $(
$ n \in \omega $),
every one of the $ 2 ^ \kappa $
members of the Boolean algebra $ D ( \kappa ) $
is the $ \Gamma $-
invariant of some $ \kappa $-
free group of cardinality $ \kappa $(
see [a6]). Assuming Gödel's axiom of constructibility, $ V = L $(
see Gödel constructive set), the same holds for all regular $ \kappa $
which are not too large (e.g., less than the first inaccessible cardinal, or even the first Mahlo cardinal); in fact, a complete characterization, for any regular $ \kappa $,
of the range of $ \Gamma $
can be given, assuming $ V = L $(
see [a6] and [a5]).
Another $ \Gamma $-
invariant can be defined for use in connection with the Whitehead problem in Abelian group theory, and its generalizations. In this case, for any Abelian groups $ A $
and $ M $,
$ \Gamma _ {M} ( A ) $
is defined to be the equivalence class of
$$
\left \{ {\nu < \kappa } : {\textrm{ for some } \tau > \nu, { \mathop{\rm Ext} } ( A _ \tau /A _ \nu , M ) \neq 0 } \right \}
$$
when $ A $
is $ \kappa $-
free of cardinality $ \kappa $
and $ A $
is written as the union, $ \cup _ {\nu < \kappa } A _ \nu $,
of a $ \kappa $-
filtration. Then $ \Gamma _ {M} ( A ) = 0 $
implies $ { \mathop{\rm Ext} } ( A, M ) = 0 $;
the converse holds for $ M $
of cardinality at most $ \kappa $,
assuming $ V = L $(
see [a2]).
Useful references for additional information are [a3] and [a4].
References
[a1] | P.C. Eklof, "Methods of logic in abelian group theory" , Abelian Group Theory , Lecture Notes in Mathematics , 616 , Springer (1977) pp. 251–269 |
[a2] | P.C. Eklof, "Homological algebra and set theory" Trans. Amer. Math. Soc. , 227 (1977) pp. 207–225 |
[a3] | P.C. Eklof, "Set-theoretic methods: the uses of gamma invariants" , Abelian Groups , Lecture Notes in Pure and Appl. Math. , 146 , M. Dekker (1993) pp. 143–153 |
[a4] | P.C. Eklof, A.H. Mekler, "Almost free modules" , North-Holland (1990) |
[a5] | P.C. Eklof, A.H. Mekler, S. Shelah, "Almost disjoint abelian groups" Israel J. Math. , 49 (1984) pp. 34–54 |
[a6] | A.H. Mekler, "How to construct almost free groups" Canad. J. Math. , 32 (1980) pp. 1206–1228 |
[a7] | S. Shelah, "A compactness theorem for singular cardinals, free algebras, Whitehead problem and transversals" Israel J. Math. , 21 (1975) pp. 319–349 |