|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
| + | <!-- |
| + | g0430203.png |
| + | $#A+1 = 272 n = 2 |
| + | $#C+1 = 272 : ~/encyclopedia/old_files/data/G043/G.0403020 \BMI G\EMI\AAhstructure |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| ''on a manifold'' | | ''on a manifold'' |
| | | |
− | A principal subbundle with structure group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g0430203.png" /> of the principal bundle of co-frames on the manifold. More exactly, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g0430204.png" /> be the principal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g0430205.png" />-bundle of all co-frames of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g0430206.png" /> over an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g0430207.png" />-dimensional manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g0430208.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g0430209.png" /> be a subgroup of the general linear group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302010.png" /> of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302011.png" />. A submanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302012.png" /> of the manifold of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302013.png" />-co-frames <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302014.png" /> defines a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302015.png" />-structure of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302017.png" />, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302018.png" /> defines a principal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302019.png" />-bundle, i.e. the fibres of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302020.png" /> are orbits of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302021.png" />. For example, a section <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302022.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302023.png" /> (a field of co-frames) defines a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302024.png" />-structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302025.png" />, which is called the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302026.png" />-structure generated by this field of co-frames. Any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302027.png" />-structure is locally generated by a field of co-frames. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302028.png" />-structure over the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302029.png" /> generated by the field of co-frames <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302030.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302031.png" /> is the identity mapping, is called the standard flat <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302033.png" />-structure. | + | A principal subbundle with structure group $ G $ |
| + | of the principal bundle of co-frames on the manifold. More exactly, let $ \pi _ {k} : M _ {k} \rightarrow M $ |
| + | be the principal $ \mathop{\rm GL} ^ {k} ( n) $- |
| + | bundle of all co-frames of order $ k $ |
| + | over an $ n $- |
| + | dimensional manifold $ M $, |
| + | and let $ G $ |
| + | be a subgroup of the general linear group $ \mathop{\rm GL} ^ {k} ( n) $ |
| + | of order $ k $. |
| + | A submanifold $ P $ |
| + | of the manifold of $ k $- |
| + | co-frames $ M _ {k} $ |
| + | defines a $ G $- |
| + | structure of order $ k $, |
| + | $ \pi = \pi _ {k} \mid _ {P} : P \rightarrow M $, |
| + | if $ \pi $ |
| + | defines a principal $ G $- |
| + | bundle, i.e. the fibres of $ \pi $ |
| + | are orbits of $ G $. |
| + | For example, a section $ x \mapsto u _ {x} ^ {k} $ |
| + | of $ \pi _ {k} $( |
| + | a field of co-frames) defines a $ G $- |
| + | structure $ P = \{ {gu _ {x} ^ {k} } : {x \in M, g \in G } \} $, |
| + | which is called the $ G $- |
| + | structure generated by this field of co-frames. Any $ G $- |
| + | structure is locally generated by a field of co-frames. The $ G $- |
| + | structure over the space $ V = \mathbf R ^ {n} $ |
| + | generated by the field of co-frames $ x \mapsto j _ {x} ^ {k} ( \mathop{\rm id} ) $, |
| + | where $ \mathop{\rm id} : V \rightarrow V $ |
| + | is the identity mapping, is called the standard flat $ G $- |
| + | structure. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302034.png" /> be a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302035.png" />-structure. The mapping of the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302036.png" /> into the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302037.png" /> can be extended to a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302038.png" />-equivariant mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302039.png" />, which can be considered as a structure of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302040.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302041.png" />. If the homogeneous space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302042.png" /> is imbedded as an orbit in a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302043.png" /> admitting a linear action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302044.png" />, then the structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302045.png" /> can be considered as a linear structure of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302046.png" />; this is called the Bernard tensor of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302048.png" />-structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302049.png" />, and is often identified with it. Conversely, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302050.png" /> be a linear geometric structure of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302051.png" /> (for example, a tensor field), whereby <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302052.png" /> belongs to a single orbit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302053.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302054.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302055.png" /> is then a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302056.png" />-structure, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302057.png" /> is the stabilizer of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302058.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302059.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302060.png" /> is its Bernard tensor. For example, a Riemannian metric defines an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302061.png" />-structure, an almost-symplectic structure defines a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302062.png" />-structure, an almost-complex structure defines a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302063.png" />-structure, and a torsion-free connection defines a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302064.png" />-structure of the second order (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302065.png" /> is considered here as a subgroup of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302066.png" />). An affinor (a field of endomorphisms) defines a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302067.png" />-structure if and only if it has at all points one and the same Jordan normal form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302068.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302069.png" /> is the centralizer of the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302070.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302071.png" />. | + | Let $ \pi : P \rightarrow M $ |
| + | be a $ G $- |
| + | structure. The mapping of the manifold $ P $ |
| + | into the point $ eG \in \mathop{\rm GL} ^ {k} ( n)/G $ |
| + | can be extended to a $ \mathop{\rm GL} ^ {k} ( n) $- |
| + | equivariant mapping $ S: M _ {k} \rightarrow \mathop{\rm GL} ^ {k} ( n)/G $, |
| + | which can be considered as a structure of type $ \mathop{\rm GL} ^ {k} ( n)/G $ |
| + | on $ M $. |
| + | If the homogeneous space $ \mathop{\rm GL} ^ {k} ( n)/G $ |
| + | is imbedded as an orbit in a vector space $ W $ |
| + | admitting a linear action of $ \mathop{\rm GL} ^ {k} ( n) $, |
| + | then the structure $ S $ |
| + | can be considered as a linear structure of type $ W $; |
| + | this is called the Bernard tensor of the $ G $- |
| + | structure $ \pi $, |
| + | and is often identified with it. Conversely, let $ S: M _ {k} \rightarrow W $ |
| + | be a linear geometric structure of type $ W $( |
| + | for example, a tensor field), whereby $ S( M _ {k} ) $ |
| + | belongs to a single orbit $ \mathop{\rm GL} ^ {k} ( n) w _ {0} $ |
| + | of $ \mathop{\rm GL} ^ {k} ( n) $. |
| + | $ P = S ^ {-} 1 ( w _ {0} ) $ |
| + | is then a $ G $- |
| + | structure, where $ G $ |
| + | is the stabilizer of the point $ w _ {0} $ |
| + | in $ \mathop{\rm GL} ^ {k} ( n) $, |
| + | and $ S $ |
| + | is its Bernard tensor. For example, a Riemannian metric defines an $ O( n) $- |
| + | structure, an almost-symplectic structure defines a $ \mathop{\rm Sp} ( n/2, \mathbf R ) $- |
| + | structure, an almost-complex structure defines a $ \mathop{\rm GL} ( n/2, \mathbf C ) $- |
| + | structure, and a torsion-free connection defines a $ \mathop{\rm GL} ( n) $- |
| + | structure of the second order ( $ \mathop{\rm GL} ( n) $ |
| + | is considered here as a subgroup of the group $ \mathop{\rm GL} ^ {2} ( n) $). |
| + | An affinor (a field of endomorphisms) defines a $ G $- |
| + | structure if and only if it has at all points one and the same Jordan normal form $ A $, |
| + | where $ G $ |
| + | is the centralizer of the matrix $ A $ |
| + | in $ \mathop{\rm GL} ( n) $. |
| | | |
− | The elements of the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302072.png" /> can be considered as co-frames of order 1 on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302073.png" />, which makes it possible to consider the natural bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302074.png" /> as an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302075.png" />-structure of order one, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302076.png" /> is the kernel of the natural homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302077.png" />. Every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302078.png" />-structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302079.png" /> of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302080.png" /> has a related sequence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302081.png" />-structures of order one, | + | The elements of the manifold $ M _ {k} $ |
| + | can be considered as co-frames of order 1 on $ M _ {k-} 1 $, |
| + | which makes it possible to consider the natural bundle $ \pi ^ {k} : M _ {k} \rightarrow M _ {k-} 1 $ |
| + | as an $ N ^ {k} $- |
| + | structure of order one, where $ N ^ {k} $ |
| + | is the kernel of the natural homomorphism $ \mathop{\rm GL} ^ {k} ( n) \rightarrow \mathop{\rm GL} ^ {k-} 1 ( n) $. |
| + | Every $ G $- |
| + | structure $ \pi : P \rightarrow M $ |
| + | of order $ k $ |
| + | has a related sequence of $ G $- |
| + | structures of order one, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302082.png" /></td> </tr></table>
| + | $$ |
| + | P \rightarrow P _ {-} 1 \rightarrow P _ {-} 2 \rightarrow \dots \rightarrow P _ {-} k = M, |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302083.png" />. Consequently, the study of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302084.png" />-structures of higher order reduces to the study of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302085.png" />-structures of order one. A co-frame <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302086.png" /> can be considered as an isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302087.png" />. | + | where $ P _ {-} i = \pi ^ {k} ( P _ {-} i+ 1 ) \subset M _ {k-} i $. |
| + | Consequently, the study of $ G $- |
| + | structures of higher order reduces to the study of $ G $- |
| + | structures of order one. A co-frame $ u _ {x} ^ {1} \in M _ {1} $ |
| + | can be considered as an isomorphism $ u _ {x} ^ {1} : T _ {x} M \rightarrow V $. |
| | | |
− | The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302088.png" />-form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302089.png" />, assigning to a vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302090.png" /> the value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302091.png" />, is called the displacement form. In the local coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302092.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302093.png" />, the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302094.png" /> is expressed as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302095.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302096.png" /> is the standard basis in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302097.png" />. | + | The $ 1 $- |
| + | form $ \theta : TM _ {1} \rightarrow V $, |
| + | assigning to a vector $ X \in T _ {u _ {x} ^ {1} } M _ {1} $ |
| + | the value $ \theta _ {u _ {x} ^ {1} } ( X) = u _ {x} ^ {1} ( \pi _ {1} ) _ \star X $, |
| + | is called the displacement form. In the local coordinates $ ( x ^ {i} , u _ {i} ^ {a} ) $ |
| + | of $ M _ {1} $, |
| + | the form $ \theta $ |
| + | is expressed as $ \theta = u _ {i} ^ {a} dx ^ {i} \otimes e _ {a} $, |
| + | where $ e _ {a} $ |
| + | is the standard basis in $ V $. |
| | | |
− | The restriction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302098.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302099.png" /> on a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020100.png" />-structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020101.png" /> is called the displacement form of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020103.png" />-structure. It possesses the following properties: 1) strong horizontality: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020104.png" />; and 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020105.png" />-equivariance: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020106.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020107.png" />. | + | The restriction $ \theta _ {P} $ |
| + | of $ \theta $ |
| + | on a $ G $- |
| + | structure $ P \subset M _ {1} $ |
| + | is called the displacement form of the $ G $- |
| + | structure. It possesses the following properties: 1) strong horizontality: $ \theta _ {P} ( X) = 0 \iff \pi _ \star X = 0 $; |
| + | and 2) $ G $- |
| + | equivariance: $ \theta _ {P} \circ g = g \circ \theta _ {P} $ |
| + | for any $ g \in G $. |
| | | |
− | Using the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020108.png" /> it is possible to characterize the principal bundles with base <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020109.png" /> that are isomorphic to a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020110.png" />-structure. Namely, a principal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020111.png" />-bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020112.png" /> is isomorphic to a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020113.png" />-structure if and only if there are a faithful linear representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020114.png" /> of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020115.png" /> in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020116.png" />-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020117.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020118.png" />, and a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020119.png" />-valued strongly-horizontal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020120.png" />-equivariant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020121.png" />-form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020122.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020123.png" />. Removal of the requirement that the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020124.png" /> be faithful gives the concept of a generalized <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020126.png" />-structure (of order one) on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020127.png" />, namely a principal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020128.png" />-bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020129.png" /> with a linear representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020130.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020131.png" />, and a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020132.png" />-valued strongly-horizontal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020133.png" />-equivariant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020134.png" />-form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020135.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020136.png" />. | + | Using the form $ \theta _ {P} $ |
| + | it is possible to characterize the principal bundles with base $ M $ |
| + | that are isomorphic to a $ G $- |
| + | structure. Namely, a principal $ G $- |
| + | bundle $ \pi : P \rightarrow M $ |
| + | is isomorphic to a $ G $- |
| + | structure if and only if there are a faithful linear representation $ \alpha $ |
| + | of the group $ G $ |
| + | in an $ n $- |
| + | dimensional vector space $ V $, |
| + | $ n = \mathop{\rm dim} M $, |
| + | and a $ V $- |
| + | valued strongly-horizontal $ G $- |
| + | equivariant $ 1 $- |
| + | form $ \theta $ |
| + | on $ P $. |
| + | Removal of the requirement that the representation $ \alpha $ |
| + | be faithful gives the concept of a generalized $ G $- |
| + | structure (of order one) on $ M $, |
| + | namely a principal $ G $- |
| + | bundle $ P \rightarrow M $ |
| + | with a linear representation $ \alpha : G \rightarrow \mathop{\rm GL} ( V) $, |
| + | $ \mathop{\rm dim} V = \mathop{\rm dim} M $, |
| + | and a $ V $- |
| + | valued strongly-horizontal $ G $- |
| + | equivariant $ 1 $- |
| + | form $ \theta $ |
| + | on $ P $. |
| | | |
− | An example of a generalized <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020137.png" />-structure is the canonical bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020138.png" /> over the homogeneous space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020139.png" /> of a Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020140.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020141.png" /> is the [[Isotropy representation|isotropy representation]] of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020142.png" />, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020143.png" /> is defined by the [[Maurer–Cartan form|Maurer–Cartan form]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020144.png" />. | + | An example of a generalized $ G $- |
| + | structure is the canonical bundle $ \pi : P \rightarrow G \setminus P $ |
| + | over the homogeneous space $ G \setminus P $ |
| + | of a Lie group $ P $. |
| + | Here $ \alpha $ |
| + | is the [[Isotropy representation|isotropy representation]] of the group $ G $, |
| + | while $ \theta $ |
| + | is defined by the [[Maurer–Cartan form|Maurer–Cartan form]] of $ P $. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020145.png" /> be a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020146.png" />-structure of order one. The bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020147.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020148.png" />-jets of local sections of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020149.png" /> can be considered as a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020150.png" />-structure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020151.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020152.png" /> is a commutative group, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020153.png" /> is the Lie algebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020154.png" />, that is linearly represented in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020155.png" /> by the formula | + | Let $ \pi : P \rightarrow M $ |
| + | be a $ G $- |
| + | structure of order one. The bundle $ \pi ^ \prime : P ^ { \prime } \rightarrow P $ |
| + | of $ 1 $- |
| + | jets of local sections of $ \pi $ |
| + | can be considered as a $ G ^ { \prime } $- |
| + | structure on $ P $, |
| + | where $ G ^ { \prime } = \mathop{\rm Hom} ( V, \mathfrak g ) $ |
| + | is a commutative group, $ \mathfrak g $ |
| + | is the Lie algebra of $ G $, |
| + | that is linearly represented in the space $ V \oplus \mathfrak g $ |
| + | by the formula |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020156.png" /></td> </tr></table>
| + | $$ |
| + | A( v, X) = \ |
| + | ( v, X+ A( v)),\ \ |
| + | A \in G ^ { \prime } ,\ \ |
| + | v \in V,\ \ |
| + | X \in \mathfrak g , |
| + | $$ |
| | | |
− | and that acts on the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020157.png" /> according to the formula | + | and that acts on the manifold $ P ^ { \prime } $ |
| + | according to the formula |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020158.png" /></td> </tr></table>
| + | $$ |
| + | H \mapsto AH = \{ {l _ {p} A( \theta ( h)) + h } : {A \in G ^ { \prime } , p = \pi ^ { \prime } ( H) , h \in H } \} |
| + | , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020159.png" /> is the canonical isomorphism of the Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020160.png" /> of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020161.png" /> onto the vertical subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020162.png" />. Here the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020163.png" /> is considered as a horizontal (i.e. complementary to the vertical) subspace in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020164.png" />. It defines a co-frame <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020165.png" />, which is defined on a vertical subspace by the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020166.png" />, and on a horizontal subspace by the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020167.png" />. The vector function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020168.png" />, defined by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020169.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020170.png" />, is called the torsion function of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020172.png" />-structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020173.png" />. A section <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020174.png" /> of the bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020175.png" /> defines a connection on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020176.png" />, while the restriction of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020177.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020178.png" /> is a function defining the coordinates of the torsion tensor of this connection relative to the field of co-frames <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020179.png" />. | + | where $ l _ {p} $ |
| + | is the canonical isomorphism of the Lie algebra $ \mathfrak g $ |
| + | of the group $ G $ |
| + | onto the vertical subspace $ T _ {p} ^ {V} P = T _ {p} ( \pi ^ {-} 1 ( \pi ( p))) $. |
| + | Here the element $ H \in P ^ { \prime } $ |
| + | is considered as a horizontal (i.e. complementary to the vertical) subspace in $ T _ {p} P $. |
| + | It defines a co-frame $ \theta _ {H} ^ \prime : T _ {p} P \mathop \rightarrow \limits ^ \approx \mathfrak g + V $, |
| + | which is defined on a vertical subspace by the mapping $ l _ {p} $, |
| + | and on a horizontal subspace by the mapping $ \theta _ {H} = \theta \mid _ {H} $. |
| + | The vector function $ C ^ { \prime } : P ^ { \prime } \rightarrow W = \mathop{\rm Hom} ( V \wedge V, V) $, |
| + | defined by the formula $ H \mapsto C _ {H} ^ { \prime } $, |
| + | $ C _ {H} ^ { \prime } ( u, v) = d \theta ( \theta _ {H} ^ {-} 1 u , \theta _ {H} ^ {-} 1 v) $, |
| + | is called the torsion function of the $ G $- |
| + | structure $ \pi $. |
| + | A section $ s: x \mapsto H _ {p(} x) $ |
| + | of the bundle $ \pi \circ \pi ^ \prime : P ^ { \prime } \rightarrow M $ |
| + | defines a connection on $ \pi $, |
| + | while the restriction of the function $ C ^ { \prime } $ |
| + | on $ s( M) $ |
| + | is a function defining the coordinates of the torsion tensor of this connection relative to the field of co-frames $ p( x) $. |
| | | |
− | The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020180.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020181.png" />-equivariant relative to the above-mentioned action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020182.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020183.png" /> and to the action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020184.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020185.png" />, which is defined by the formula | + | The mapping $ C ^ { \prime } : P ^ { \prime } \rightarrow W $ |
| + | is $ G ^ { \prime } $- |
| + | equivariant relative to the above-mentioned action of $ G ^ { \prime } $ |
| + | on $ P $ |
| + | and to the action of $ G ^ { \prime } $ |
| + | on $ W $, |
| + | which is defined by the formula |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020186.png" /></td> </tr></table>
| + | $$ |
| + | A: w \mapsto Aw = w + \delta A, |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020187.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020188.png" />. The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020189.png" /> induced by the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020190.png" /> is called the structure function of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020192.png" />-structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020193.png" />, the vanishing of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020194.png" /> is equivalent to the existence of a torsion-free connection on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020195.png" />. | + | where $ \delta : G ^ { \prime } \rightarrow W $, |
| + | $ ( \delta A)( u, v) = A( u) v - A( v) u $. |
| + | The mapping $ C: P \rightarrow G ^ { \prime } \setminus W $ |
| + | induced by the mapping $ C ^ { \prime } $ |
| + | is called the structure function of the $ G $- |
| + | structure $ \pi $, |
| + | the vanishing of $ C $ |
| + | is equivalent to the existence of a torsion-free connection on $ \pi $. |
| | | |
− | The choice of a subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020196.png" /> complementary to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020197.png" /> defines a subbundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020198.png" /> of the bundle of co-frames <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020199.png" /> with structure group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020200.png" />, i.e. a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020201.png" />-structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020202.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020203.png" />. It is called the first prolongation of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020205.png" />-structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020206.png" />. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020209.png" />-th prolongation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020210.png" /> is defined by induction as the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020211.png" />-structure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020212.png" />, where the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020213.png" /> is isomorphic to the vector group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020214.png" />. The structure function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020215.png" /> of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020216.png" />-th prolongation is called the structure function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020219.png" />-th order of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020220.png" />-structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020221.png" />. | + | The choice of a subspace $ D \subset W $ |
| + | complementary to $ \delta G ^ { \prime } $ |
| + | defines a subbundle $ P ^ {(} 1) = C ^ { \prime - 1 } ( D) $ |
| + | of the bundle of co-frames $ \pi ^ { \prime } : P ^ { \prime } \rightarrow P $ |
| + | with structure group $ G ^ {(} 1) = G ^ { \prime } \cap \mathop{\rm Ker} \delta \cong \mathfrak g \otimes V ^ \star \cap V \otimes S ^ {2} V ^ \star \subset V \otimes V ^ \star 2 $, |
| + | i.e. a $ G ^ {(} 1) $- |
| + | structure $ \pi ^ {(} 1) = \pi ^ \prime \mid _ {P ^ {(} 1) } : P ^ {(} 1) \rightarrow P $ |
| + | on $ P $. |
| + | It is called the first prolongation of the $ G $- |
| + | structure $ \pi $. |
| + | The $ i $- |
| + | th prolongation $ \pi ^ {(} i) : P ^ {(} i) \rightarrow P ^ {(} i- 1) $ |
| + | is defined by induction as the $ G ^ {(} i) $- |
| + | structure on $ P ^ {(} i- 1) $, |
| + | where the group $ G ^ {(} i) $ |
| + | is isomorphic to the vector group $ \mathfrak g \otimes S ^ {i} V ^ \star \cap V \otimes S ^ {i+} 1 V ^ \star \subset V \otimes V ^ {\star(} i+ 1) $. |
| + | The structure function $ C ^ {(} i) $ |
| + | of the $ i $- |
| + | th prolongation is called the structure function of $ i $- |
| + | th order of the $ G $- |
| + | structure $ \pi $. |
| | | |
− | The central problem of the theory of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020222.png" />-structures is the local equivalence problem, i.e. the problem of finding necessary and sufficient conditions under which two <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020224.png" />-structures <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020225.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020226.png" /> with the same structure group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020227.png" /> are locally equivalent, i.e. a local diffeomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020228.png" /> of the manifolds <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020229.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020230.png" /> should exist that induces an isomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020231.png" />-structures over the neighbourhoods <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020232.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020233.png" />. A particular case of this problem is the integrability problem, i.e. the problem of finding necessary and sufficient conditions for the local equivalence of a given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020234.png" />-structure and the standard flat <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020235.png" />-structure. The local equivalence problem can be reformulated as the problem of finding a complete system of local invariants of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020236.png" />-structure. | + | The central problem of the theory of $ G $- |
| + | structures is the local equivalence problem, i.e. the problem of finding necessary and sufficient conditions under which two $ G $- |
| + | structures $ \pi : P \rightarrow M $ |
| + | and $ \overline \pi \; : \overline{P}\; \rightarrow \overline{M}\; $ |
| + | with the same structure group $ G $ |
| + | are locally equivalent, i.e. a local diffeomorphism $ \phi : M \supset U \rightarrow \overline{U}\; \subset \overline{M}\; $ |
| + | of the manifolds $ M $ |
| + | and $ \overline{M}\; $ |
| + | should exist that induces an isomorphism of $ G $- |
| + | structures over the neighbourhoods $ U $ |
| + | and $ \overline{U}\; $. |
| + | A particular case of this problem is the integrability problem, i.e. the problem of finding necessary and sufficient conditions for the local equivalence of a given $ G $- |
| + | structure and the standard flat $ G $- |
| + | structure. The local equivalence problem can be reformulated as the problem of finding a complete system of local invariants of a $ G $- |
| + | structure. |
| | | |
− | For an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020237.png" />-structure, which is identified with a Riemannian metric, the integrability problem was solved by B. Riemann: Necessary and sufficient conditions for integrability consist in the vanishing of the curvature tensor of the metric. The local equivalence problem was solved by E. Christoffel and R. Lipschitz: A complete system of local invariants of a Riemannian metric consists of its curvature tensor and its successive covariant derivatives (see [[#References|[1]]]). | + | For an $ O( n) $- |
| + | structure, which is identified with a Riemannian metric, the integrability problem was solved by B. Riemann: Necessary and sufficient conditions for integrability consist in the vanishing of the curvature tensor of the metric. The local equivalence problem was solved by E. Christoffel and R. Lipschitz: A complete system of local invariants of a Riemannian metric consists of its curvature tensor and its successive covariant derivatives (see [[#References|[1]]]). |
| | | |
− | An approach to solving the equivalence problem is based on the concepts of a prolongation and a structure function. Every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020238.png" />-structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020239.png" /> of order one with structure group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020240.png" /> is connected with a sequence of prolongations | + | An approach to solving the equivalence problem is based on the concepts of a prolongation and a structure function. Every $ G $- |
| + | structure $ \pi : P \rightarrow M $ |
| + | of order one with structure group $ G \subset \mathop{\rm GL} ( n) $ |
| + | is connected with a sequence of prolongations |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020241.png" /></td> </tr></table>
| + | $$ |
| + | \dots \rightarrow P ^ {(} i) \rightarrow P ^ {(} i- 1) \rightarrow \dots \rightarrow P \mathop \rightarrow \limits ^ \pi M, |
| + | $$ |
| | | |
− | and a sequence of structure functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020242.png" />. For an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020243.png" />-structure, the structure function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020244.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020245.png" /> is equal to 0, while the essential parts of the remaining structure functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020246.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020247.png" />, are identified with the curvature tensor of the corresponding metric and its successive covariant derivatives. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020248.png" /> to be integrable it is necessary and sufficient that the structure functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020249.png" /> be constant, and that their values coincide with the corresponding values of the structure functions of the standard flat <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020250.png" />-structure (see [[#References|[6]]], [[#References|[8]]], [[#References|[9]]]). The number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020251.png" /> depends only on the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020252.png" />. For a broad class of linear groups, especially for all irreducible groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020253.png" /> that do not belong to Berger's list of holonomy groups of spaces with a torsion-free affine connection [[#References|[3]]], one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020254.png" />, and for a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020255.png" />-structure to be integrable it is necessary and sufficient that the structure function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020256.png" /> vanishes, or that a torsion-free linear connection exists, preserving the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020257.png" />-structure. | + | and a sequence of structure functions $ C ^ {(} i) $. |
| + | For an $ O( n) $- |
| + | structure, the structure function $ C ^ {(} 0) = C $ |
| + | on $ P ^ {(} 0) = P $ |
| + | is equal to 0, while the essential parts of the remaining structure functions $ C ^ {(} i) $, |
| + | $ i > 0 $, |
| + | are identified with the curvature tensor of the corresponding metric and its successive covariant derivatives. For $ \pi $ |
| + | to be integrable it is necessary and sufficient that the structure functions $ C ^ {(} 0) \dots C ^ {(} k) $ |
| + | be constant, and that their values coincide with the corresponding values of the structure functions of the standard flat $ G $- |
| + | structure (see [[#References|[6]]], [[#References|[8]]], [[#References|[9]]]). The number $ k $ |
| + | depends only on the group $ G $. |
| + | For a broad class of linear groups, especially for all irreducible groups $ G \subset \mathop{\rm GL} ( n) $ |
| + | that do not belong to Berger's list of holonomy groups of spaces with a torsion-free affine connection [[#References|[3]]], one has $ k= 0 $, |
| + | and for a $ G $- |
| + | structure to be integrable it is necessary and sufficient that the structure function $ C ^ {(} 0) $ |
| + | vanishes, or that a torsion-free linear connection exists, preserving the $ G $- |
| + | structure. |
| | | |
− | A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020258.png" />-structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020259.png" /> is called a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020261.png" />-structure of finite type (equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020262.png" />) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020263.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020264.png" />. In this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020265.png" /> is a field of co-frames (an absolute parallelism), and the automorphism group of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020266.png" />-structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020267.png" /> is isomorphic to the automorphism group of this parallelism and is a Lie group. The local equivalence problem of these structures reduces to the equivalence problem of absolute parallelisms and has been solved in terms of a finite sequence of structure functions (see [[#References|[2]]]). For a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020268.png" />-structure of infinite type, the local equivalence problem remains unsolved in the general case (1984). | + | A $ G $- |
| + | structure $ \pi $ |
| + | is called a $ G $- |
| + | structure of finite type (equal to $ k $) |
| + | if $ G ^ {(} k- 1) \neq \{ e \} $, |
| + | $ G ^ {(} k) = \{ e \} $. |
| + | In this case $ \pi ^ {(} k) : P ^ {(} k) \rightarrow P ^ {(} k- 1) $ |
| + | is a field of co-frames (an absolute parallelism), and the automorphism group of the $ G $- |
| + | structure $ \pi $ |
| + | is isomorphic to the automorphism group of this parallelism and is a Lie group. The local equivalence problem of these structures reduces to the equivalence problem of absolute parallelisms and has been solved in terms of a finite sequence of structure functions (see [[#References|[2]]]). For a $ G $- |
| + | structure of infinite type, the local equivalence problem remains unsolved in the general case (1984). |
| | | |
− | Two <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020269.png" />-structures <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020270.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020271.png" /> are called formally equivalent at the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020273.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020274.png" /> if an isomorphism of the fibres <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020275.png" /> exists that can be continued to an isomorphism of the corresponding fibres of the prolongations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020276.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020277.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020278.png" />. Examples have been found which demonstrate that if two <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020279.png" />-structures of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020280.png" /> are formally equivalent for all pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020281.png" />, then it does not follow, generally speaking, that they are locally equivalent [[#References|[6]]]. In the analytic case, proper subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020282.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020283.png" /> exist, which are countable unions of analytic sets, such that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020284.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020285.png" />, the formal equivalence of two structures <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020286.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020287.png" /> at the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020288.png" /> implies that they are locally equivalent [[#References|[7]]]. | + | Two $ G $- |
| + | structures $ \pi : P \rightarrow M $ |
| + | and $ \pi ^ \prime : P ^ { \prime } \rightarrow M ^ { \prime } $ |
| + | are called formally equivalent at the points $ x \in M $, |
| + | $ x ^ \prime \in M ^ { \prime } $ |
| + | if an isomorphism of the fibres $ \pi ^ {-} 1 ( x) \rightarrow \pi ^ {-} 1 ( x ^ \prime ) $ |
| + | exists that can be continued to an isomorphism of the corresponding fibres of the prolongations $ P ^ {(} i) \rightarrow M $ |
| + | and $ P ^ { \prime ( i) } \rightarrow M ^ { \prime } $ |
| + | $ ( i \geq 0) $. |
| + | Examples have been found which demonstrate that if two $ G $- |
| + | structures of class $ C ^ \infty $ |
| + | are formally equivalent for all pairs $ ( x, x ^ \prime ) \in M \times M ^ { \prime } $, |
| + | then it does not follow, generally speaking, that they are locally equivalent [[#References|[6]]]. In the analytic case, proper subsets $ S( M) \subset M $, |
| + | $ S( M ^ { \prime } ) \subset M ^ { \prime } $ |
| + | exist, which are countable unions of analytic sets, such that for any $ x \in M \setminus S( M) $, |
| + | $ x ^ \prime \in M ^ { \prime } \setminus S( M ^ { \prime } ) $, |
| + | the formal equivalence of two structures $ P $ |
| + | and $ P ^ { \prime } $ |
| + | at the points $ x, x ^ \prime $ |
| + | implies that they are locally equivalent [[#References|[7]]]. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , '''1''' , Wiley (1963)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Sternberg, "Lectures on differential geometry" , Prentice-Hall (1964)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Berger, "Sur les groupes d'holonomie homogène des variétés à connexion affine et des variétés riemanniennes" ''Bull. Soc. Math. France'' , '''83''' (1955) pp. 279–330</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S.S. Chern, "The geometry of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020289.png" />-structures" ''Bull. Amer. Math. Soc.'' , '''72''' (1966) pp. 167–219</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> S. Kobayashi, "Transformation groups in differential geometry" , Springer (1972)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> P. Molino, "Théorie des <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020290.png" />-structures: le problème d'Aeequivalence" , Springer (1977)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> T. Morimoto, "Sur le problème d'équivalence des structures géométriques" ''C.R. Acad. Sci. Paris'' , '''292''' : 1 (1981) pp. 63–66 (English summary)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> I.M. Singer, S. Sternberg, "The infinite groups of Lie and Cartan. I. The transitive groups" ''J. d'Anal. Math.'' , '''15''' (1965) pp. 1–114</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> A.S. Pollack, "The integrability problem for pseudogroup structures" ''J. Diff. Geom.'' , '''9''' : 3 (1974) pp. 355–390</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , '''1''' , Wiley (1963)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Sternberg, "Lectures on differential geometry" , Prentice-Hall (1964)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Berger, "Sur les groupes d'holonomie homogène des variétés à connexion affine et des variétés riemanniennes" ''Bull. Soc. Math. France'' , '''83''' (1955) pp. 279–330</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S.S. Chern, "The geometry of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020289.png" />-structures" ''Bull. Amer. Math. Soc.'' , '''72''' (1966) pp. 167–219</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> S. Kobayashi, "Transformation groups in differential geometry" , Springer (1972)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> P. Molino, "Théorie des <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020290.png" />-structures: le problème d'Aeequivalence" , Springer (1977)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> T. Morimoto, "Sur le problème d'équivalence des structures géométriques" ''C.R. Acad. Sci. Paris'' , '''292''' : 1 (1981) pp. 63–66 (English summary)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> I.M. Singer, S. Sternberg, "The infinite groups of Lie and Cartan. I. The transitive groups" ''J. d'Anal. Math.'' , '''15''' (1965) pp. 1–114</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> A.S. Pollack, "The integrability problem for pseudogroup structures" ''J. Diff. Geom.'' , '''9''' : 3 (1974) pp. 355–390</TD></TR></table> |
on a manifold
A principal subbundle with structure group $ G $
of the principal bundle of co-frames on the manifold. More exactly, let $ \pi _ {k} : M _ {k} \rightarrow M $
be the principal $ \mathop{\rm GL} ^ {k} ( n) $-
bundle of all co-frames of order $ k $
over an $ n $-
dimensional manifold $ M $,
and let $ G $
be a subgroup of the general linear group $ \mathop{\rm GL} ^ {k} ( n) $
of order $ k $.
A submanifold $ P $
of the manifold of $ k $-
co-frames $ M _ {k} $
defines a $ G $-
structure of order $ k $,
$ \pi = \pi _ {k} \mid _ {P} : P \rightarrow M $,
if $ \pi $
defines a principal $ G $-
bundle, i.e. the fibres of $ \pi $
are orbits of $ G $.
For example, a section $ x \mapsto u _ {x} ^ {k} $
of $ \pi _ {k} $(
a field of co-frames) defines a $ G $-
structure $ P = \{ {gu _ {x} ^ {k} } : {x \in M, g \in G } \} $,
which is called the $ G $-
structure generated by this field of co-frames. Any $ G $-
structure is locally generated by a field of co-frames. The $ G $-
structure over the space $ V = \mathbf R ^ {n} $
generated by the field of co-frames $ x \mapsto j _ {x} ^ {k} ( \mathop{\rm id} ) $,
where $ \mathop{\rm id} : V \rightarrow V $
is the identity mapping, is called the standard flat $ G $-
structure.
Let $ \pi : P \rightarrow M $
be a $ G $-
structure. The mapping of the manifold $ P $
into the point $ eG \in \mathop{\rm GL} ^ {k} ( n)/G $
can be extended to a $ \mathop{\rm GL} ^ {k} ( n) $-
equivariant mapping $ S: M _ {k} \rightarrow \mathop{\rm GL} ^ {k} ( n)/G $,
which can be considered as a structure of type $ \mathop{\rm GL} ^ {k} ( n)/G $
on $ M $.
If the homogeneous space $ \mathop{\rm GL} ^ {k} ( n)/G $
is imbedded as an orbit in a vector space $ W $
admitting a linear action of $ \mathop{\rm GL} ^ {k} ( n) $,
then the structure $ S $
can be considered as a linear structure of type $ W $;
this is called the Bernard tensor of the $ G $-
structure $ \pi $,
and is often identified with it. Conversely, let $ S: M _ {k} \rightarrow W $
be a linear geometric structure of type $ W $(
for example, a tensor field), whereby $ S( M _ {k} ) $
belongs to a single orbit $ \mathop{\rm GL} ^ {k} ( n) w _ {0} $
of $ \mathop{\rm GL} ^ {k} ( n) $.
$ P = S ^ {-} 1 ( w _ {0} ) $
is then a $ G $-
structure, where $ G $
is the stabilizer of the point $ w _ {0} $
in $ \mathop{\rm GL} ^ {k} ( n) $,
and $ S $
is its Bernard tensor. For example, a Riemannian metric defines an $ O( n) $-
structure, an almost-symplectic structure defines a $ \mathop{\rm Sp} ( n/2, \mathbf R ) $-
structure, an almost-complex structure defines a $ \mathop{\rm GL} ( n/2, \mathbf C ) $-
structure, and a torsion-free connection defines a $ \mathop{\rm GL} ( n) $-
structure of the second order ( $ \mathop{\rm GL} ( n) $
is considered here as a subgroup of the group $ \mathop{\rm GL} ^ {2} ( n) $).
An affinor (a field of endomorphisms) defines a $ G $-
structure if and only if it has at all points one and the same Jordan normal form $ A $,
where $ G $
is the centralizer of the matrix $ A $
in $ \mathop{\rm GL} ( n) $.
The elements of the manifold $ M _ {k} $
can be considered as co-frames of order 1 on $ M _ {k-} 1 $,
which makes it possible to consider the natural bundle $ \pi ^ {k} : M _ {k} \rightarrow M _ {k-} 1 $
as an $ N ^ {k} $-
structure of order one, where $ N ^ {k} $
is the kernel of the natural homomorphism $ \mathop{\rm GL} ^ {k} ( n) \rightarrow \mathop{\rm GL} ^ {k-} 1 ( n) $.
Every $ G $-
structure $ \pi : P \rightarrow M $
of order $ k $
has a related sequence of $ G $-
structures of order one,
$$
P \rightarrow P _ {-} 1 \rightarrow P _ {-} 2 \rightarrow \dots \rightarrow P _ {-} k = M,
$$
where $ P _ {-} i = \pi ^ {k} ( P _ {-} i+ 1 ) \subset M _ {k-} i $.
Consequently, the study of $ G $-
structures of higher order reduces to the study of $ G $-
structures of order one. A co-frame $ u _ {x} ^ {1} \in M _ {1} $
can be considered as an isomorphism $ u _ {x} ^ {1} : T _ {x} M \rightarrow V $.
The $ 1 $-
form $ \theta : TM _ {1} \rightarrow V $,
assigning to a vector $ X \in T _ {u _ {x} ^ {1} } M _ {1} $
the value $ \theta _ {u _ {x} ^ {1} } ( X) = u _ {x} ^ {1} ( \pi _ {1} ) _ \star X $,
is called the displacement form. In the local coordinates $ ( x ^ {i} , u _ {i} ^ {a} ) $
of $ M _ {1} $,
the form $ \theta $
is expressed as $ \theta = u _ {i} ^ {a} dx ^ {i} \otimes e _ {a} $,
where $ e _ {a} $
is the standard basis in $ V $.
The restriction $ \theta _ {P} $
of $ \theta $
on a $ G $-
structure $ P \subset M _ {1} $
is called the displacement form of the $ G $-
structure. It possesses the following properties: 1) strong horizontality: $ \theta _ {P} ( X) = 0 \iff \pi _ \star X = 0 $;
and 2) $ G $-
equivariance: $ \theta _ {P} \circ g = g \circ \theta _ {P} $
for any $ g \in G $.
Using the form $ \theta _ {P} $
it is possible to characterize the principal bundles with base $ M $
that are isomorphic to a $ G $-
structure. Namely, a principal $ G $-
bundle $ \pi : P \rightarrow M $
is isomorphic to a $ G $-
structure if and only if there are a faithful linear representation $ \alpha $
of the group $ G $
in an $ n $-
dimensional vector space $ V $,
$ n = \mathop{\rm dim} M $,
and a $ V $-
valued strongly-horizontal $ G $-
equivariant $ 1 $-
form $ \theta $
on $ P $.
Removal of the requirement that the representation $ \alpha $
be faithful gives the concept of a generalized $ G $-
structure (of order one) on $ M $,
namely a principal $ G $-
bundle $ P \rightarrow M $
with a linear representation $ \alpha : G \rightarrow \mathop{\rm GL} ( V) $,
$ \mathop{\rm dim} V = \mathop{\rm dim} M $,
and a $ V $-
valued strongly-horizontal $ G $-
equivariant $ 1 $-
form $ \theta $
on $ P $.
An example of a generalized $ G $-
structure is the canonical bundle $ \pi : P \rightarrow G \setminus P $
over the homogeneous space $ G \setminus P $
of a Lie group $ P $.
Here $ \alpha $
is the isotropy representation of the group $ G $,
while $ \theta $
is defined by the Maurer–Cartan form of $ P $.
Let $ \pi : P \rightarrow M $
be a $ G $-
structure of order one. The bundle $ \pi ^ \prime : P ^ { \prime } \rightarrow P $
of $ 1 $-
jets of local sections of $ \pi $
can be considered as a $ G ^ { \prime } $-
structure on $ P $,
where $ G ^ { \prime } = \mathop{\rm Hom} ( V, \mathfrak g ) $
is a commutative group, $ \mathfrak g $
is the Lie algebra of $ G $,
that is linearly represented in the space $ V \oplus \mathfrak g $
by the formula
$$
A( v, X) = \
( v, X+ A( v)),\ \
A \in G ^ { \prime } ,\ \
v \in V,\ \
X \in \mathfrak g ,
$$
and that acts on the manifold $ P ^ { \prime } $
according to the formula
$$
H \mapsto AH = \{ {l _ {p} A( \theta ( h)) + h } : {A \in G ^ { \prime } , p = \pi ^ { \prime } ( H) , h \in H } \}
,
$$
where $ l _ {p} $
is the canonical isomorphism of the Lie algebra $ \mathfrak g $
of the group $ G $
onto the vertical subspace $ T _ {p} ^ {V} P = T _ {p} ( \pi ^ {-} 1 ( \pi ( p))) $.
Here the element $ H \in P ^ { \prime } $
is considered as a horizontal (i.e. complementary to the vertical) subspace in $ T _ {p} P $.
It defines a co-frame $ \theta _ {H} ^ \prime : T _ {p} P \mathop \rightarrow \limits ^ \approx \mathfrak g + V $,
which is defined on a vertical subspace by the mapping $ l _ {p} $,
and on a horizontal subspace by the mapping $ \theta _ {H} = \theta \mid _ {H} $.
The vector function $ C ^ { \prime } : P ^ { \prime } \rightarrow W = \mathop{\rm Hom} ( V \wedge V, V) $,
defined by the formula $ H \mapsto C _ {H} ^ { \prime } $,
$ C _ {H} ^ { \prime } ( u, v) = d \theta ( \theta _ {H} ^ {-} 1 u , \theta _ {H} ^ {-} 1 v) $,
is called the torsion function of the $ G $-
structure $ \pi $.
A section $ s: x \mapsto H _ {p(} x) $
of the bundle $ \pi \circ \pi ^ \prime : P ^ { \prime } \rightarrow M $
defines a connection on $ \pi $,
while the restriction of the function $ C ^ { \prime } $
on $ s( M) $
is a function defining the coordinates of the torsion tensor of this connection relative to the field of co-frames $ p( x) $.
The mapping $ C ^ { \prime } : P ^ { \prime } \rightarrow W $
is $ G ^ { \prime } $-
equivariant relative to the above-mentioned action of $ G ^ { \prime } $
on $ P $
and to the action of $ G ^ { \prime } $
on $ W $,
which is defined by the formula
$$
A: w \mapsto Aw = w + \delta A,
$$
where $ \delta : G ^ { \prime } \rightarrow W $,
$ ( \delta A)( u, v) = A( u) v - A( v) u $.
The mapping $ C: P \rightarrow G ^ { \prime } \setminus W $
induced by the mapping $ C ^ { \prime } $
is called the structure function of the $ G $-
structure $ \pi $,
the vanishing of $ C $
is equivalent to the existence of a torsion-free connection on $ \pi $.
The choice of a subspace $ D \subset W $
complementary to $ \delta G ^ { \prime } $
defines a subbundle $ P ^ {(} 1) = C ^ { \prime - 1 } ( D) $
of the bundle of co-frames $ \pi ^ { \prime } : P ^ { \prime } \rightarrow P $
with structure group $ G ^ {(} 1) = G ^ { \prime } \cap \mathop{\rm Ker} \delta \cong \mathfrak g \otimes V ^ \star \cap V \otimes S ^ {2} V ^ \star \subset V \otimes V ^ \star 2 $,
i.e. a $ G ^ {(} 1) $-
structure $ \pi ^ {(} 1) = \pi ^ \prime \mid _ {P ^ {(} 1) } : P ^ {(} 1) \rightarrow P $
on $ P $.
It is called the first prolongation of the $ G $-
structure $ \pi $.
The $ i $-
th prolongation $ \pi ^ {(} i) : P ^ {(} i) \rightarrow P ^ {(} i- 1) $
is defined by induction as the $ G ^ {(} i) $-
structure on $ P ^ {(} i- 1) $,
where the group $ G ^ {(} i) $
is isomorphic to the vector group $ \mathfrak g \otimes S ^ {i} V ^ \star \cap V \otimes S ^ {i+} 1 V ^ \star \subset V \otimes V ^ {\star(} i+ 1) $.
The structure function $ C ^ {(} i) $
of the $ i $-
th prolongation is called the structure function of $ i $-
th order of the $ G $-
structure $ \pi $.
The central problem of the theory of $ G $-
structures is the local equivalence problem, i.e. the problem of finding necessary and sufficient conditions under which two $ G $-
structures $ \pi : P \rightarrow M $
and $ \overline \pi \; : \overline{P}\; \rightarrow \overline{M}\; $
with the same structure group $ G $
are locally equivalent, i.e. a local diffeomorphism $ \phi : M \supset U \rightarrow \overline{U}\; \subset \overline{M}\; $
of the manifolds $ M $
and $ \overline{M}\; $
should exist that induces an isomorphism of $ G $-
structures over the neighbourhoods $ U $
and $ \overline{U}\; $.
A particular case of this problem is the integrability problem, i.e. the problem of finding necessary and sufficient conditions for the local equivalence of a given $ G $-
structure and the standard flat $ G $-
structure. The local equivalence problem can be reformulated as the problem of finding a complete system of local invariants of a $ G $-
structure.
For an $ O( n) $-
structure, which is identified with a Riemannian metric, the integrability problem was solved by B. Riemann: Necessary and sufficient conditions for integrability consist in the vanishing of the curvature tensor of the metric. The local equivalence problem was solved by E. Christoffel and R. Lipschitz: A complete system of local invariants of a Riemannian metric consists of its curvature tensor and its successive covariant derivatives (see [1]).
An approach to solving the equivalence problem is based on the concepts of a prolongation and a structure function. Every $ G $-
structure $ \pi : P \rightarrow M $
of order one with structure group $ G \subset \mathop{\rm GL} ( n) $
is connected with a sequence of prolongations
$$
\dots \rightarrow P ^ {(} i) \rightarrow P ^ {(} i- 1) \rightarrow \dots \rightarrow P \mathop \rightarrow \limits ^ \pi M,
$$
and a sequence of structure functions $ C ^ {(} i) $.
For an $ O( n) $-
structure, the structure function $ C ^ {(} 0) = C $
on $ P ^ {(} 0) = P $
is equal to 0, while the essential parts of the remaining structure functions $ C ^ {(} i) $,
$ i > 0 $,
are identified with the curvature tensor of the corresponding metric and its successive covariant derivatives. For $ \pi $
to be integrable it is necessary and sufficient that the structure functions $ C ^ {(} 0) \dots C ^ {(} k) $
be constant, and that their values coincide with the corresponding values of the structure functions of the standard flat $ G $-
structure (see [6], [8], [9]). The number $ k $
depends only on the group $ G $.
For a broad class of linear groups, especially for all irreducible groups $ G \subset \mathop{\rm GL} ( n) $
that do not belong to Berger's list of holonomy groups of spaces with a torsion-free affine connection [3], one has $ k= 0 $,
and for a $ G $-
structure to be integrable it is necessary and sufficient that the structure function $ C ^ {(} 0) $
vanishes, or that a torsion-free linear connection exists, preserving the $ G $-
structure.
A $ G $-
structure $ \pi $
is called a $ G $-
structure of finite type (equal to $ k $)
if $ G ^ {(} k- 1) \neq \{ e \} $,
$ G ^ {(} k) = \{ e \} $.
In this case $ \pi ^ {(} k) : P ^ {(} k) \rightarrow P ^ {(} k- 1) $
is a field of co-frames (an absolute parallelism), and the automorphism group of the $ G $-
structure $ \pi $
is isomorphic to the automorphism group of this parallelism and is a Lie group. The local equivalence problem of these structures reduces to the equivalence problem of absolute parallelisms and has been solved in terms of a finite sequence of structure functions (see [2]). For a $ G $-
structure of infinite type, the local equivalence problem remains unsolved in the general case (1984).
Two $ G $-
structures $ \pi : P \rightarrow M $
and $ \pi ^ \prime : P ^ { \prime } \rightarrow M ^ { \prime } $
are called formally equivalent at the points $ x \in M $,
$ x ^ \prime \in M ^ { \prime } $
if an isomorphism of the fibres $ \pi ^ {-} 1 ( x) \rightarrow \pi ^ {-} 1 ( x ^ \prime ) $
exists that can be continued to an isomorphism of the corresponding fibres of the prolongations $ P ^ {(} i) \rightarrow M $
and $ P ^ { \prime ( i) } \rightarrow M ^ { \prime } $
$ ( i \geq 0) $.
Examples have been found which demonstrate that if two $ G $-
structures of class $ C ^ \infty $
are formally equivalent for all pairs $ ( x, x ^ \prime ) \in M \times M ^ { \prime } $,
then it does not follow, generally speaking, that they are locally equivalent [6]. In the analytic case, proper subsets $ S( M) \subset M $,
$ S( M ^ { \prime } ) \subset M ^ { \prime } $
exist, which are countable unions of analytic sets, such that for any $ x \in M \setminus S( M) $,
$ x ^ \prime \in M ^ { \prime } \setminus S( M ^ { \prime } ) $,
the formal equivalence of two structures $ P $
and $ P ^ { \prime } $
at the points $ x, x ^ \prime $
implies that they are locally equivalent [7].
References
[1] | S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , 1 , Wiley (1963) |
[2] | S. Sternberg, "Lectures on differential geometry" , Prentice-Hall (1964) |
[3] | M. Berger, "Sur les groupes d'holonomie homogène des variétés à connexion affine et des variétés riemanniennes" Bull. Soc. Math. France , 83 (1955) pp. 279–330 |
[4] | S.S. Chern, "The geometry of -structures" Bull. Amer. Math. Soc. , 72 (1966) pp. 167–219 |
[5] | S. Kobayashi, "Transformation groups in differential geometry" , Springer (1972) |
[6] | P. Molino, "Théorie des -structures: le problème d'Aeequivalence" , Springer (1977) |
[7] | T. Morimoto, "Sur le problème d'équivalence des structures géométriques" C.R. Acad. Sci. Paris , 292 : 1 (1981) pp. 63–66 (English summary) |
[8] | I.M. Singer, S. Sternberg, "The infinite groups of Lie and Cartan. I. The transitive groups" J. d'Anal. Math. , 15 (1965) pp. 1–114 |
[9] | A.S. Pollack, "The integrability problem for pseudogroup structures" J. Diff. Geom. , 9 : 3 (1974) pp. 355–390 |