Namespaces
Variants
Actions

Difference between revisions of "Euler polynomials"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
e0365501.png
 +
$#A+1 = 23 n = 0
 +
$#C+1 = 23 : ~/encyclopedia/old_files/data/E036/E.0306550 Euler polynomials
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
Polynomials of the form
 
Polynomials of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036550/e0365501.png" /></td> </tr></table>
+
$$
 +
E _ {n} ( x)  = \sum _ { k= } 0 ^ { n }  \left ( \begin{array}{c}
 +
n \\
 +
k
 +
\end{array}
 +
\right )
 +
 
 +
 +
\frac{E _ k}{2  ^ {k}}
 +
  \left ( x -
 +
\frac{1}{2}
 +
\right )  ^ {n-} k ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036550/e0365502.png" /> are the [[Euler numbers|Euler numbers]]. The Euler polynomials can be computed successively by means of the formula
+
where $  E _ {k} $
 +
are the [[Euler numbers|Euler numbers]]. The Euler polynomials can be computed successively by means of the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036550/e0365503.png" /></td> </tr></table>
+
$$
 +
E _ {n} ( x) + \sum _ { s= } 0 ^ { n }  \left ( \begin{array}{c}
 +
n \\
 +
s
 +
\end{array}
 +
\right )
 +
E _ {s} ( x)  = 2 x  ^ {n} .
 +
$$
  
 
In particular,
 
In particular,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036550/e0365504.png" /></td> </tr></table>
+
$$
 +
E _ {0} ( x)  = 1 ,\ \
 +
E _ {1} ( x)  = x -
 +
\frac{1}{2}
 +
,\ \
 +
E _ {2} ( x)  = x ( x - 1 ) .
 +
$$
  
 
The Euler polynomials satisfy the difference equation
 
The Euler polynomials satisfy the difference equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036550/e0365505.png" /></td> </tr></table>
+
$$
 +
E _ {n} ( x + 1 ) + E _ {n} ( x)  = 2 x  ^ {n}
 +
$$
  
 
and belong to the class of [[Appell polynomials|Appell polynomials]], that is, they satisfy
 
and belong to the class of [[Appell polynomials|Appell polynomials]], that is, they satisfy
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036550/e0365506.png" /></td> </tr></table>
+
$$
 +
 
 +
\frac{d}{dx}
 +
E _ {n} ( x)  = n E _ {n-} 1 ( x) .
 +
$$
  
 
The generating function of the Euler polynomials is
 
The generating function of the Euler polynomials is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036550/e0365507.png" /></td> </tr></table>
+
$$
 +
 
 +
\frac{2 e  ^ {xt} }{e  ^ {t} + 1 }
 +
  = \
 +
\sum _ { n= } 0 ^  \infty 
 +
\frac{E _ {n} ( x) }{n!}
 +
t  ^ {n} .
 +
$$
  
 
The Euler polynomials admit the Fourier expansion
 
The Euler polynomials admit the Fourier expansion
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036550/e0365508.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$ \tag{* }
 +
E _ {n} ( x)  = n! over {\pi  ^ {n+} 1 } \sum _ { k= } 0 ^  \infty 
 +
 
 +
\frac{\cos [ ( 2 k + 1 ) \pi x + ( n+ 1) \pi / 2 ] }{( 2 k + 1 ) ^ {n+} 1 }
 +
,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036550/e0365509.png" /></td> </tr></table>
+
$$
 +
0 \leq  x  \leq  1 ,\  n  \geq  1 .
 +
$$
  
 
They satisfy the relations
 
They satisfy the relations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036550/e03655010.png" /></td> </tr></table>
+
$$
 +
E _ {n} ( 1 - x )  = ( - 1 )  ^ {n} E _ {n} ( x) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036550/e03655011.png" /></td> </tr></table>
+
$$
 +
E _ {n} ( mx)  = m  ^ {n} \sum _ { k= } 0 ^ { m- }  1 ( - 1
 +
)  ^ {k} E _ {n} \left ( x +
 +
\frac{k}{m}
 +
\right )
 +
$$
  
if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036550/e03655012.png" /> is odd,
+
if $  m $
 +
is odd,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036550/e03655013.png" /></td> </tr></table>
+
$$
 +
E _ {n} ( mx)  = -  
 +
\frac{2 m  ^ {n} }{n+}
 +
1
 +
\sum _ { k= } 0 ^ { m- }  1 ( - 1 )  ^ {k} B _ {n+} 1
 +
\left ( x +
 +
\frac{k}{m}
 +
\right )
 +
$$
  
if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036550/e03655014.png" /> is even. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036550/e03655015.png" /> is a Bernoulli polynomial (cf. [[Bernoulli polynomials|Bernoulli polynomials]]). The periodic functions coinciding with the right-hand side of (*) are extremal in the [[Kolmogorov inequality|Kolmogorov inequality]] and in a number of other extremal problems in function theory. Generalized Euler polynomials have also been considered.
+
if $  m $
 +
is even. Here $  B _ {n+} 1 $
 +
is a Bernoulli polynomial (cf. [[Bernoulli polynomials|Bernoulli polynomials]]). The periodic functions coinciding with the right-hand side of (*) are extremal in the [[Kolmogorov inequality|Kolmogorov inequality]] and in a number of other extremal problems in function theory. Generalized Euler polynomials have also been considered.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L. Euler,  "Opera omnia: series prima: opera mathematica: institutiones calculi differentialis" , Teubner  (1980)  (Translated from Latin)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.E. Nörlund,  "Volesungen über Differenzenrechnung" , Springer  (1924)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L. Euler,  "Opera omnia: series prima: opera mathematica: institutiones calculi differentialis" , Teubner  (1980)  (Translated from Latin)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.E. Nörlund,  "Volesungen über Differenzenrechnung" , Springer  (1924)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
The Euler polynomials satisfy in addition the identities
 
The Euler polynomials satisfy in addition the identities
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036550/e03655016.png" /></td> </tr></table>
+
$$
 +
E _ {n} ( x+ h) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036550/e03655017.png" /></td> </tr></table>
+
$$
 +
= \
 +
E _ {n} ( x) + \left ( \begin{array}{c}
 +
n \\
 +
1
 +
\end{array}
 +
\right ) h E _ {n-} 1 ( x) + \dots +
 +
\left ( \begin{array}{c}
 +
n \\
 +
n- 1
 +
\end{array}
 +
\right ) h  ^ {n-} 1 E _ {1} ( x) + E _ {0} ( x),
 +
$$
  
 
written symbolically as
 
written symbolically as
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036550/e03655018.png" /></td> </tr></table>
+
$$
 +
E _ {n} ( x+ h)  = \{ E ( x) + h \}  ^ {n} .
 +
$$
  
Here the right-hand side should be read as follows: first expand the right-hand side into sums of expressions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036550/e03655019.png" /> and then replace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036550/e03655020.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036550/e03655021.png" />.
+
Here the right-hand side should be read as follows: first expand the right-hand side into sums of expressions $  ( {} _ {i}  ^ {n} ) \{ E ( x) \}  ^ {i} h  ^ {n-} i $
 +
and then replace $  \{ E ( x) \}  ^ {i} $
 +
with $  E _ {i} ( x) $.
  
Using the same symbolic notation one has for every polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036550/e03655022.png" />,
+
Using the same symbolic notation one has for every polynomial $  p( x) $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036550/e03655023.png" /></td> </tr></table>
+
$$
 +
p ( E ( x) + 1) + p( E( x) )  = 2 p( x) .
 +
$$

Revision as of 19:38, 5 June 2020


Polynomials of the form

$$ E _ {n} ( x) = \sum _ { k= } 0 ^ { n } \left ( \begin{array}{c} n \\ k \end{array} \right ) \frac{E _ k}{2 ^ {k}} \left ( x - \frac{1}{2} \right ) ^ {n-} k , $$

where $ E _ {k} $ are the Euler numbers. The Euler polynomials can be computed successively by means of the formula

$$ E _ {n} ( x) + \sum _ { s= } 0 ^ { n } \left ( \begin{array}{c} n \\ s \end{array} \right ) E _ {s} ( x) = 2 x ^ {n} . $$

In particular,

$$ E _ {0} ( x) = 1 ,\ \ E _ {1} ( x) = x - \frac{1}{2} ,\ \ E _ {2} ( x) = x ( x - 1 ) . $$

The Euler polynomials satisfy the difference equation

$$ E _ {n} ( x + 1 ) + E _ {n} ( x) = 2 x ^ {n} $$

and belong to the class of Appell polynomials, that is, they satisfy

$$ \frac{d}{dx} E _ {n} ( x) = n E _ {n-} 1 ( x) . $$

The generating function of the Euler polynomials is

$$ \frac{2 e ^ {xt} }{e ^ {t} + 1 } = \ \sum _ { n= } 0 ^ \infty \frac{E _ {n} ( x) }{n!} t ^ {n} . $$

The Euler polynomials admit the Fourier expansion

$$ \tag{* } E _ {n} ( x) = n! over {\pi ^ {n+} 1 } \sum _ { k= } 0 ^ \infty \frac{\cos [ ( 2 k + 1 ) \pi x + ( n+ 1) \pi / 2 ] }{( 2 k + 1 ) ^ {n+} 1 } , $$

$$ 0 \leq x \leq 1 ,\ n \geq 1 . $$

They satisfy the relations

$$ E _ {n} ( 1 - x ) = ( - 1 ) ^ {n} E _ {n} ( x) , $$

$$ E _ {n} ( mx) = m ^ {n} \sum _ { k= } 0 ^ { m- } 1 ( - 1 ) ^ {k} E _ {n} \left ( x + \frac{k}{m} \right ) $$

if $ m $ is odd,

$$ E _ {n} ( mx) = - \frac{2 m ^ {n} }{n+} 1 \sum _ { k= } 0 ^ { m- } 1 ( - 1 ) ^ {k} B _ {n+} 1 \left ( x + \frac{k}{m} \right ) $$

if $ m $ is even. Here $ B _ {n+} 1 $ is a Bernoulli polynomial (cf. Bernoulli polynomials). The periodic functions coinciding with the right-hand side of (*) are extremal in the Kolmogorov inequality and in a number of other extremal problems in function theory. Generalized Euler polynomials have also been considered.

References

[1] L. Euler, "Opera omnia: series prima: opera mathematica: institutiones calculi differentialis" , Teubner (1980) (Translated from Latin)
[2] N.E. Nörlund, "Volesungen über Differenzenrechnung" , Springer (1924)

Comments

The Euler polynomials satisfy in addition the identities

$$ E _ {n} ( x+ h) = $$

$$ = \ E _ {n} ( x) + \left ( \begin{array}{c} n \\ 1 \end{array} \right ) h E _ {n-} 1 ( x) + \dots + \left ( \begin{array}{c} n \\ n- 1 \end{array} \right ) h ^ {n-} 1 E _ {1} ( x) + E _ {0} ( x), $$

written symbolically as

$$ E _ {n} ( x+ h) = \{ E ( x) + h \} ^ {n} . $$

Here the right-hand side should be read as follows: first expand the right-hand side into sums of expressions $ ( {} _ {i} ^ {n} ) \{ E ( x) \} ^ {i} h ^ {n-} i $ and then replace $ \{ E ( x) \} ^ {i} $ with $ E _ {i} ( x) $.

Using the same symbolic notation one has for every polynomial $ p( x) $,

$$ p ( E ( x) + 1) + p( E( x) ) = 2 p( x) . $$

How to Cite This Entry:
Euler polynomials. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Euler_polynomials&oldid=17907
This article was adapted from an original article by Yu.N. Subbotin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article