Difference between revisions of "Euler polynomials"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | e0365501.png | ||
| + | $#A+1 = 23 n = 0 | ||
| + | $#C+1 = 23 : ~/encyclopedia/old_files/data/E036/E.0306550 Euler polynomials | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
Polynomials of the form | Polynomials of the form | ||
| − | + | $$ | |
| + | E _ {n} ( x) = \sum _ { k= } 0 ^ { n } \left ( \begin{array}{c} | ||
| + | n \\ | ||
| + | k | ||
| + | \end{array} | ||
| + | \right ) | ||
| + | |||
| + | |||
| + | \frac{E _ k}{2 ^ {k}} | ||
| + | \left ( x - | ||
| + | \frac{1}{2} | ||
| + | \right ) ^ {n-} k , | ||
| + | $$ | ||
| − | where | + | where $ E _ {k} $ |
| + | are the [[Euler numbers|Euler numbers]]. The Euler polynomials can be computed successively by means of the formula | ||
| − | + | $$ | |
| + | E _ {n} ( x) + \sum _ { s= } 0 ^ { n } \left ( \begin{array}{c} | ||
| + | n \\ | ||
| + | s | ||
| + | \end{array} | ||
| + | \right ) | ||
| + | E _ {s} ( x) = 2 x ^ {n} . | ||
| + | $$ | ||
In particular, | In particular, | ||
| − | + | $$ | |
| + | E _ {0} ( x) = 1 ,\ \ | ||
| + | E _ {1} ( x) = x - | ||
| + | \frac{1}{2} | ||
| + | ,\ \ | ||
| + | E _ {2} ( x) = x ( x - 1 ) . | ||
| + | $$ | ||
The Euler polynomials satisfy the difference equation | The Euler polynomials satisfy the difference equation | ||
| − | + | $$ | |
| + | E _ {n} ( x + 1 ) + E _ {n} ( x) = 2 x ^ {n} | ||
| + | $$ | ||
and belong to the class of [[Appell polynomials|Appell polynomials]], that is, they satisfy | and belong to the class of [[Appell polynomials|Appell polynomials]], that is, they satisfy | ||
| − | + | $$ | |
| + | |||
| + | \frac{d}{dx} | ||
| + | E _ {n} ( x) = n E _ {n-} 1 ( x) . | ||
| + | $$ | ||
The generating function of the Euler polynomials is | The generating function of the Euler polynomials is | ||
| − | + | $$ | |
| + | |||
| + | \frac{2 e ^ {xt} }{e ^ {t} + 1 } | ||
| + | = \ | ||
| + | \sum _ { n= } 0 ^ \infty | ||
| + | \frac{E _ {n} ( x) }{n!} | ||
| + | t ^ {n} . | ||
| + | $$ | ||
The Euler polynomials admit the Fourier expansion | The Euler polynomials admit the Fourier expansion | ||
| − | + | $$ \tag{* } | |
| + | E _ {n} ( x) = n! over {\pi ^ {n+} 1 } \sum _ { k= } 0 ^ \infty | ||
| + | |||
| + | \frac{\cos [ ( 2 k + 1 ) \pi x + ( n+ 1) \pi / 2 ] }{( 2 k + 1 ) ^ {n+} 1 } | ||
| + | , | ||
| + | $$ | ||
| − | + | $$ | |
| + | 0 \leq x \leq 1 ,\ n \geq 1 . | ||
| + | $$ | ||
They satisfy the relations | They satisfy the relations | ||
| − | + | $$ | |
| + | E _ {n} ( 1 - x ) = ( - 1 ) ^ {n} E _ {n} ( x) , | ||
| + | $$ | ||
| − | + | $$ | |
| + | E _ {n} ( mx) = m ^ {n} \sum _ { k= } 0 ^ { m- } 1 ( - 1 | ||
| + | ) ^ {k} E _ {n} \left ( x + | ||
| + | \frac{k}{m} | ||
| + | \right ) | ||
| + | $$ | ||
| − | if | + | if $ m $ |
| + | is odd, | ||
| − | + | $$ | |
| + | E _ {n} ( mx) = - | ||
| + | \frac{2 m ^ {n} }{n+} | ||
| + | 1 | ||
| + | \sum _ { k= } 0 ^ { m- } 1 ( - 1 ) ^ {k} B _ {n+} 1 | ||
| + | \left ( x + | ||
| + | \frac{k}{m} | ||
| + | \right ) | ||
| + | $$ | ||
| − | if | + | if $ m $ |
| + | is even. Here $ B _ {n+} 1 $ | ||
| + | is a Bernoulli polynomial (cf. [[Bernoulli polynomials|Bernoulli polynomials]]). The periodic functions coinciding with the right-hand side of (*) are extremal in the [[Kolmogorov inequality|Kolmogorov inequality]] and in a number of other extremal problems in function theory. Generalized Euler polynomials have also been considered. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Euler, "Opera omnia: series prima: opera mathematica: institutiones calculi differentialis" , Teubner (1980) (Translated from Latin)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.E. Nörlund, "Volesungen über Differenzenrechnung" , Springer (1924)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Euler, "Opera omnia: series prima: opera mathematica: institutiones calculi differentialis" , Teubner (1980) (Translated from Latin)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.E. Nörlund, "Volesungen über Differenzenrechnung" , Springer (1924)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
The Euler polynomials satisfy in addition the identities | The Euler polynomials satisfy in addition the identities | ||
| − | + | $$ | |
| + | E _ {n} ( x+ h) = | ||
| + | $$ | ||
| − | + | $$ | |
| + | = \ | ||
| + | E _ {n} ( x) + \left ( \begin{array}{c} | ||
| + | n \\ | ||
| + | 1 | ||
| + | \end{array} | ||
| + | \right ) h E _ {n-} 1 ( x) + \dots + | ||
| + | \left ( \begin{array}{c} | ||
| + | n \\ | ||
| + | n- 1 | ||
| + | \end{array} | ||
| + | \right ) h ^ {n-} 1 E _ {1} ( x) + E _ {0} ( x), | ||
| + | $$ | ||
written symbolically as | written symbolically as | ||
| − | + | $$ | |
| + | E _ {n} ( x+ h) = \{ E ( x) + h \} ^ {n} . | ||
| + | $$ | ||
| − | Here the right-hand side should be read as follows: first expand the right-hand side into sums of expressions | + | Here the right-hand side should be read as follows: first expand the right-hand side into sums of expressions $ ( {} _ {i} ^ {n} ) \{ E ( x) \} ^ {i} h ^ {n-} i $ |
| + | and then replace $ \{ E ( x) \} ^ {i} $ | ||
| + | with $ E _ {i} ( x) $. | ||
| − | Using the same symbolic notation one has for every polynomial | + | Using the same symbolic notation one has for every polynomial $ p( x) $, |
| − | + | $$ | |
| + | p ( E ( x) + 1) + p( E( x) ) = 2 p( x) . | ||
| + | $$ | ||
Revision as of 19:38, 5 June 2020
Polynomials of the form
$$ E _ {n} ( x) = \sum _ { k= } 0 ^ { n } \left ( \begin{array}{c} n \\ k \end{array} \right ) \frac{E _ k}{2 ^ {k}} \left ( x - \frac{1}{2} \right ) ^ {n-} k , $$
where $ E _ {k} $ are the Euler numbers. The Euler polynomials can be computed successively by means of the formula
$$ E _ {n} ( x) + \sum _ { s= } 0 ^ { n } \left ( \begin{array}{c} n \\ s \end{array} \right ) E _ {s} ( x) = 2 x ^ {n} . $$
In particular,
$$ E _ {0} ( x) = 1 ,\ \ E _ {1} ( x) = x - \frac{1}{2} ,\ \ E _ {2} ( x) = x ( x - 1 ) . $$
The Euler polynomials satisfy the difference equation
$$ E _ {n} ( x + 1 ) + E _ {n} ( x) = 2 x ^ {n} $$
and belong to the class of Appell polynomials, that is, they satisfy
$$ \frac{d}{dx} E _ {n} ( x) = n E _ {n-} 1 ( x) . $$
The generating function of the Euler polynomials is
$$ \frac{2 e ^ {xt} }{e ^ {t} + 1 } = \ \sum _ { n= } 0 ^ \infty \frac{E _ {n} ( x) }{n!} t ^ {n} . $$
The Euler polynomials admit the Fourier expansion
$$ \tag{* } E _ {n} ( x) = n! over {\pi ^ {n+} 1 } \sum _ { k= } 0 ^ \infty \frac{\cos [ ( 2 k + 1 ) \pi x + ( n+ 1) \pi / 2 ] }{( 2 k + 1 ) ^ {n+} 1 } , $$
$$ 0 \leq x \leq 1 ,\ n \geq 1 . $$
They satisfy the relations
$$ E _ {n} ( 1 - x ) = ( - 1 ) ^ {n} E _ {n} ( x) , $$
$$ E _ {n} ( mx) = m ^ {n} \sum _ { k= } 0 ^ { m- } 1 ( - 1 ) ^ {k} E _ {n} \left ( x + \frac{k}{m} \right ) $$
if $ m $ is odd,
$$ E _ {n} ( mx) = - \frac{2 m ^ {n} }{n+} 1 \sum _ { k= } 0 ^ { m- } 1 ( - 1 ) ^ {k} B _ {n+} 1 \left ( x + \frac{k}{m} \right ) $$
if $ m $ is even. Here $ B _ {n+} 1 $ is a Bernoulli polynomial (cf. Bernoulli polynomials). The periodic functions coinciding with the right-hand side of (*) are extremal in the Kolmogorov inequality and in a number of other extremal problems in function theory. Generalized Euler polynomials have also been considered.
References
| [1] | L. Euler, "Opera omnia: series prima: opera mathematica: institutiones calculi differentialis" , Teubner (1980) (Translated from Latin) |
| [2] | N.E. Nörlund, "Volesungen über Differenzenrechnung" , Springer (1924) |
Comments
The Euler polynomials satisfy in addition the identities
$$ E _ {n} ( x+ h) = $$
$$ = \ E _ {n} ( x) + \left ( \begin{array}{c} n \\ 1 \end{array} \right ) h E _ {n-} 1 ( x) + \dots + \left ( \begin{array}{c} n \\ n- 1 \end{array} \right ) h ^ {n-} 1 E _ {1} ( x) + E _ {0} ( x), $$
written symbolically as
$$ E _ {n} ( x+ h) = \{ E ( x) + h \} ^ {n} . $$
Here the right-hand side should be read as follows: first expand the right-hand side into sums of expressions $ ( {} _ {i} ^ {n} ) \{ E ( x) \} ^ {i} h ^ {n-} i $ and then replace $ \{ E ( x) \} ^ {i} $ with $ E _ {i} ( x) $.
Using the same symbolic notation one has for every polynomial $ p( x) $,
$$ p ( E ( x) + 1) + p( E( x) ) = 2 p( x) . $$
Euler polynomials. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Euler_polynomials&oldid=17907