Namespaces
Variants
Actions

Difference between revisions of "Equivalent summation methods"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
Methods that sum the same sequences (possibly to different limits); in other words, equivalent summation methods are summation methods having the same [[Summability field|summability field]]. Sometimes methods that have the same summability field and that are compatible summation methods (cf. [[Compatibility of summation methods|Compatibility of summation methods]]) are called equivalent. Examples of equivalent and compatible methods are the [[Cesàro summation methods|Cesàro summation methods]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e0360701.png" /> and the Riesz summation methods (cf. [[Riesz summation method|Riesz summation method]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e0360702.png" /> (for the same <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e0360703.png" />), the Cesàro summation methods <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e0360704.png" /> and the [[Hölder summation methods|Hölder summation methods]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e0360705.png" /> (for the same integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e0360706.png" />). There are equivalent summation methods that are not compatible.
+
<!--
 +
e0360701.png
 +
$#A+1 = 21 n = 0
 +
$#C+1 = 21 : ~/encyclopedia/old_files/data/E036/E.0306070 Equivalent summation methods
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Sometimes one considers not the complete summability fields, but subsets of them belonging to some set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e0360707.png" />. If these subsets coincide for two summation methods, then it is said that the methods are equivalent on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e0360708.png" />. Summation methods for real sequences are called completely equivalent if the equality of their summability fields remains valid upon the inclusion of sequences summable to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e0360709.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e03607010.png" />. Equivalence of summation methods for special forms of summability (absolute, strong, etc.) is defined similarly.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
[[Matrix summation method|Matrix summation method]], defined by transformations of sequences to sequences using matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e03607011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e03607012.png" />, are called absolutely equivalent on a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e03607013.png" /> of sequences <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e03607014.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e03607015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e03607016.png" />, for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e03607017.png" />, where
+
Methods that sum the same sequences (possibly to different limits); in other words, equivalent summation methods are summation methods having the same [[Summability field|summability field]]. Sometimes methods that have the same summability field and that are compatible summation methods (cf. [[Compatibility of summation methods|Compatibility of summation methods]]) are called equivalent. Examples of equivalent and compatible methods are the [[Cesàro summation methods|Cesàro summation methods]]  $  ( C, k) $
 +
and the Riesz summation methods (cf. [[Riesz summation method|Riesz summation method]])  $  ( R, n, k) $(
 +
for the same  $  k \geq  0 $),
 +
the Cesàro summation methods  $  ( C, k) $
 +
and the [[Hölder summation methods|Hölder summation methods]]  $  ( H, k) $(
 +
for the same integer  $  k \geq  0 $).  
 +
There are equivalent summation methods that are not compatible.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e03607018.png" /></td> </tr></table>
+
Sometimes one considers not the complete summability fields, but subsets of them belonging to some set  $  U $.
 +
If these subsets coincide for two summation methods, then it is said that the methods are equivalent on  $  U $.
 +
Summation methods for real sequences are called completely equivalent if the equality of their summability fields remains valid upon the inclusion of sequences summable to  $  + \infty $
 +
and  $  - \infty $.  
 +
Equivalence of summation methods for special forms of summability (absolute, strong, etc.) is defined similarly.
  
and the series in the expressions for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e03607019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e03607020.png" /> converge for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e03607021.png" />.
+
[[Matrix summation method|Matrix summation method]], defined by transformations of sequences to sequences using matrices  $  \| a _ {nk} \| $
 +
and  $  \| b _ {nk} \| $,
 +
are called absolutely equivalent on a set  $  U $
 +
of sequences  $  \{ s _ {k} \} $
 +
if  $  \tau _ {n}  ^ {(} A) - \tau _ {n}  ^ {(} B) \rightarrow 0 $,
 +
$  n \rightarrow \infty $,
 +
for any  $  \{ s _ {k} \} \subset  U $,
 +
where
 +
 
 +
$$
 +
\tau _ {n}  ^ {(} A)  = \
 +
\sum _ {k = 1 } ^  \infty 
 +
a _ {nk} s _ {k} ,\ \
 +
\tau _ {n}  ^ {(} B)  = \
 +
\sum _ {k = 1 } ^  \infty 
 +
b _ {nk} s _ {k} ,
 +
$$
 +
 
 +
and the series in the expressions for $  \tau _ {n}  ^ {(} A) $
 +
and $  \tau _ {n}  ^ {(} B) $
 +
converge for all $  n $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  R.G. Cooke,  "Infinite matrices and sequence spaces" , Macmillan  (1950)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G.H. Hardy,  "Divergent series" , Clarendon Press  (1949)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G.F. Kangro,  "Theory of summability of sequences and series"  ''J. Soviet Math.'' , '''5''' :  1  (1976)  pp. 1–45  ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''12'''  (1974)  pp. 5–70</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  R.G. Cooke,  "Infinite matrices and sequence spaces" , Macmillan  (1950)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G.H. Hardy,  "Divergent series" , Clarendon Press  (1949)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G.F. Kangro,  "Theory of summability of sequences and series"  ''J. Soviet Math.'' , '''5''' :  1  (1976)  pp. 1–45  ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''12'''  (1974)  pp. 5–70</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Zeller,  W. Beekmann,  "Theorie der Limitierungsverfahren" , Springer  (1970)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Zeller,  W. Beekmann,  "Theorie der Limitierungsverfahren" , Springer  (1970)</TD></TR></table>

Revision as of 19:37, 5 June 2020


Methods that sum the same sequences (possibly to different limits); in other words, equivalent summation methods are summation methods having the same summability field. Sometimes methods that have the same summability field and that are compatible summation methods (cf. Compatibility of summation methods) are called equivalent. Examples of equivalent and compatible methods are the Cesàro summation methods $ ( C, k) $ and the Riesz summation methods (cf. Riesz summation method) $ ( R, n, k) $( for the same $ k \geq 0 $), the Cesàro summation methods $ ( C, k) $ and the Hölder summation methods $ ( H, k) $( for the same integer $ k \geq 0 $). There are equivalent summation methods that are not compatible.

Sometimes one considers not the complete summability fields, but subsets of them belonging to some set $ U $. If these subsets coincide for two summation methods, then it is said that the methods are equivalent on $ U $. Summation methods for real sequences are called completely equivalent if the equality of their summability fields remains valid upon the inclusion of sequences summable to $ + \infty $ and $ - \infty $. Equivalence of summation methods for special forms of summability (absolute, strong, etc.) is defined similarly.

Matrix summation method, defined by transformations of sequences to sequences using matrices $ \| a _ {nk} \| $ and $ \| b _ {nk} \| $, are called absolutely equivalent on a set $ U $ of sequences $ \{ s _ {k} \} $ if $ \tau _ {n} ^ {(} A) - \tau _ {n} ^ {(} B) \rightarrow 0 $, $ n \rightarrow \infty $, for any $ \{ s _ {k} \} \subset U $, where

$$ \tau _ {n} ^ {(} A) = \ \sum _ {k = 1 } ^ \infty a _ {nk} s _ {k} ,\ \ \tau _ {n} ^ {(} B) = \ \sum _ {k = 1 } ^ \infty b _ {nk} s _ {k} , $$

and the series in the expressions for $ \tau _ {n} ^ {(} A) $ and $ \tau _ {n} ^ {(} B) $ converge for all $ n $.

References

[1] R.G. Cooke, "Infinite matrices and sequence spaces" , Macmillan (1950)
[2] G.H. Hardy, "Divergent series" , Clarendon Press (1949)
[3] G.F. Kangro, "Theory of summability of sequences and series" J. Soviet Math. , 5 : 1 (1976) pp. 1–45 Itogi Nauk. i Tekhn. Mat. Anal. , 12 (1974) pp. 5–70

Comments

References

[a1] K. Zeller, W. Beekmann, "Theorie der Limitierungsverfahren" , Springer (1970)
How to Cite This Entry:
Equivalent summation methods. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Equivalent_summation_methods&oldid=12024
This article was adapted from an original article by I.I. Volkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article