Difference between revisions of "Ellipsoidal coordinates"
(→References: Jeffreys & Jeffreys (1972)) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | e0354201.png | ||
+ | $#A+1 = 21 n = 0 | ||
+ | $#C+1 = 21 : ~/encyclopedia/old_files/data/E035/E.0305420 Ellipsoidal coordinates, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''spatial elliptic coordinates'' | ''spatial elliptic coordinates'' | ||
− | The numbers | + | The numbers $ \lambda $, |
+ | $ \mu $ | ||
+ | and $ \nu $ | ||
+ | connected with Cartesian rectangular coordinates $ x $, | ||
+ | $ y $ | ||
+ | and $ z $ | ||
+ | by the formulas | ||
− | + | $$ | |
+ | x ^ {2} = | ||
+ | \frac{( \lambda + a ^ {2} ) ( \mu + a ^ {2} ) | ||
+ | ( \nu + a ^ {2} ) }{( b ^ {2} - a ^ {2} ) ( c ^ {2} - a ^ {2} ) } | ||
+ | , | ||
+ | $$ | ||
− | + | $$ | |
+ | y ^ {2} = | ||
+ | \frac{( \lambda ^ {2} + b ^ {2} ) ( \mu ^ {2} + b ^ {2} ) ( \nu + b | ||
+ | ^ {2} ) }{( a ^ {2} - b ^ {2} ) ( c ^ {2} - b ^ {2} ) } | ||
+ | , | ||
+ | $$ | ||
− | + | $$ | |
+ | z ^ {2} = | ||
+ | \frac{( \lambda + c ^ {2} ) ( \mu + c ^ {2} ) ( \mu + c ^ {2} | ||
+ | ) }{( a ^ {2} - c ^ {2} ) ( b ^ {2} - c ^ {2} ) } | ||
+ | , | ||
+ | $$ | ||
− | where < | + | where $ - a ^ {2} < \nu < - b ^ {2} < \mu < - c ^ {2} < \lambda < \infty $. |
+ | The coordinate surfaces are (see Fig.): ellipses $ ( \lambda = \textrm{ const } ) $, | ||
+ | one-sheet hyperbolas ( $ \mu = \textrm{ const } $), | ||
+ | and two-sheet hyperbolas ( $ \nu = \textrm{ const } $), | ||
+ | with centres at the coordinate origin. | ||
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/e035420a.gif" /> | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/e035420a.gif" /> | ||
Line 15: | Line 52: | ||
Figure: e035420a | Figure: e035420a | ||
− | The system of ellipsoidal coordinates is orthogonal. To every triple of numbers | + | The system of ellipsoidal coordinates is orthogonal. To every triple of numbers $ \lambda $, |
+ | $ \mu $ | ||
+ | and $ \nu $ | ||
+ | correspond 8 points (one in each octant), which are symmetric to each other relative to the coordinate planes of the system $ O x y z $. | ||
The [[Lamé coefficients|Lamé coefficients]] are | The [[Lamé coefficients|Lamé coefficients]] are | ||
− | + | $$ | |
− | + | L _ \lambda = | |
− | + | \frac{1}{2} | |
+ | \sqrt { | ||
− | + | \frac{( \lambda - \mu ) ( \mu - \nu ) }{( \lambda + a ^ {2} ) ( \lambda + b ^ {2} ) ( \lambda + c ^ {2} ) } | |
+ | } , | ||
+ | $$ | ||
− | + | $$ | |
+ | L _ \mu = | ||
+ | \frac{1}{2} | ||
+ | \sqrt { | ||
+ | \frac{( \lambda - \mu ) ( \nu - \mu ) }{( | ||
+ | \mu + a ^ {2} ) ( \mu + b ^ {2} ) ( \mu + c ^ {2} ) } | ||
+ | } , | ||
+ | $$ | ||
+ | $$ | ||
+ | L _ \nu = | ||
+ | \frac{1}{2} | ||
+ | \sqrt { | ||
+ | \frac{( \lambda - \nu ) ( \mu - \nu ) }{( | ||
+ | \nu + a ^ {2} ) ( \nu + b ^ {2} ) ( \nu + c ^ {2} ) } | ||
+ | } . | ||
+ | $$ | ||
+ | If one of the conditions $ a ^ {2} > b ^ {2} > c ^ {2} > 0 $ | ||
+ | in the definition of ellipsoidal coordinates is replaced by an equality, then degenerate ellipsoidal coordinate systems are obtained. | ||
====Comments==== | ====Comments==== | ||
− | + | [[Laplace equation|Laplace's equation]] expressed in ellipsoidal coordinates is separable (cf [[Separation of variables, method of]]), and leads to [[Lamé function]]s. | |
====References==== | ====References==== |
Latest revision as of 19:37, 5 June 2020
spatial elliptic coordinates
The numbers $ \lambda $, $ \mu $ and $ \nu $ connected with Cartesian rectangular coordinates $ x $, $ y $ and $ z $ by the formulas
$$ x ^ {2} = \frac{( \lambda + a ^ {2} ) ( \mu + a ^ {2} ) ( \nu + a ^ {2} ) }{( b ^ {2} - a ^ {2} ) ( c ^ {2} - a ^ {2} ) } , $$
$$ y ^ {2} = \frac{( \lambda ^ {2} + b ^ {2} ) ( \mu ^ {2} + b ^ {2} ) ( \nu + b ^ {2} ) }{( a ^ {2} - b ^ {2} ) ( c ^ {2} - b ^ {2} ) } , $$
$$ z ^ {2} = \frac{( \lambda + c ^ {2} ) ( \mu + c ^ {2} ) ( \mu + c ^ {2} ) }{( a ^ {2} - c ^ {2} ) ( b ^ {2} - c ^ {2} ) } , $$
where $ - a ^ {2} < \nu < - b ^ {2} < \mu < - c ^ {2} < \lambda < \infty $. The coordinate surfaces are (see Fig.): ellipses $ ( \lambda = \textrm{ const } ) $, one-sheet hyperbolas ( $ \mu = \textrm{ const } $), and two-sheet hyperbolas ( $ \nu = \textrm{ const } $), with centres at the coordinate origin.
Figure: e035420a
The system of ellipsoidal coordinates is orthogonal. To every triple of numbers $ \lambda $, $ \mu $ and $ \nu $ correspond 8 points (one in each octant), which are symmetric to each other relative to the coordinate planes of the system $ O x y z $.
The Lamé coefficients are
$$ L _ \lambda = \frac{1}{2} \sqrt { \frac{( \lambda - \mu ) ( \mu - \nu ) }{( \lambda + a ^ {2} ) ( \lambda + b ^ {2} ) ( \lambda + c ^ {2} ) } } , $$
$$ L _ \mu = \frac{1}{2} \sqrt { \frac{( \lambda - \mu ) ( \nu - \mu ) }{( \mu + a ^ {2} ) ( \mu + b ^ {2} ) ( \mu + c ^ {2} ) } } , $$
$$ L _ \nu = \frac{1}{2} \sqrt { \frac{( \lambda - \nu ) ( \mu - \nu ) }{( \nu + a ^ {2} ) ( \nu + b ^ {2} ) ( \nu + c ^ {2} ) } } . $$
If one of the conditions $ a ^ {2} > b ^ {2} > c ^ {2} > 0 $ in the definition of ellipsoidal coordinates is replaced by an equality, then degenerate ellipsoidal coordinate systems are obtained.
Comments
Laplace's equation expressed in ellipsoidal coordinates is separable (cf Separation of variables, method of), and leads to Lamé functions.
References
[a1] | G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , 1 , Gauthier-Villars (1887) pp. 1–18 |
[a2] | Harold Jeffreys, Bertha Jeffreys, Methods of Mathematical Physics, 3rd edition, Cambridge University Press (1972) Zbl 0238.00004 |
Ellipsoidal coordinates. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ellipsoidal_coordinates&oldid=34026