Namespaces
Variants
Actions

Difference between revisions of "Differential comitant"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A differentiable mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d0318701.png" /> of a tensor bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d0318702.png" /> on a manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d0318703.png" /> into a tensor bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d0318704.png" /> on the same manifold such that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d0318705.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d0318706.png" /> are the projections of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d0318707.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d0318708.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d0318709.png" />, then
+
<!--
 +
d0318701.png
 +
$#A+1 = 31 n = 0
 +
$#C+1 = 31 : ~/encyclopedia/old_files/data/D031/D.0301870 Differential comitant
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d03187010.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
The components of the tensor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d03187011.png" /> in a local chart <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d03187012.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d03187013.png" /> depend on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d03187014.png" /> only by means of the components of the tensor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d03187015.png" />.
+
A differentiable mapping  $  \phi $
 +
of a tensor bundle  $  T $
 +
on a manifold  $  M $
 +
into a tensor bundle  $  T ^ { \prime } $
 +
on the same manifold such that if  $  p : T \rightarrow M $
 +
and  $  p  ^  \prime  : T ^ { \prime } \rightarrow M $
 +
are the projections of $  T $
 +
and  $  T ^ { \prime } $
 +
on  $  M $,
 +
then
  
In particular, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d03187016.png" /> is reduced to the bundle of relative scalars of weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d03187017.png" />, the differential comitant is a differential invariant of weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d03187018.png" />.
+
$$
 +
p  ^  \prime  \phi  = p .
 +
$$
  
 +
The components of the tensor  $  T ^ { \prime } = \phi ( T) $
 +
in a local chart  $  \xi $
 +
on  $  M $
 +
depend on  $  \xi $
 +
only by means of the components of the tensor  $  T $.
  
 +
In particular, when  $  T ^ { \prime } $
 +
is reduced to the bundle of relative scalars of weight  $  g $,
 +
the differential comitant is a differential invariant of weight  $  g $.
  
 
====Comments====
 
====Comments====
Thus, a differential comitant is simply a vector bundle mapping from the tensor bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d03187019.png" /> to the tensor bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d03187020.png" />.
+
Thus, a differential comitant is simply a vector bundle mapping from the tensor bundle $  T $
 +
to the tensor bundle $  T ^ { \prime } $.
  
The bundle of relative scalars of weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d03187022.png" /> is constructed as follows. It is a line bundle. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d03187023.png" /> be an atlas for the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d03187024.png" /> with coordinate change diffeomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d03187025.png" />. Take the trivial line bundles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d03187026.png" /> over each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d03187027.png" /> and glue them together by means of the diffeomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d03187028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d03187029.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d03187030.png" /> is the Jacobian matrix of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d03187031.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031870/d03187032.png" />.
+
The bundle of relative scalars of weight $  g $
 +
is constructed as follows. It is a line bundle. Let $  ( U _  \alpha  ) _  \alpha  $
 +
be an atlas for the manifold $  M $
 +
with coordinate change diffeomorphisms $  \phi _ {\alpha \beta }  : U _ {\alpha \beta }  \rightarrow U _ {\beta \alpha }  $.  
 +
Take the trivial line bundles $  U _  \alpha  \times \mathbf R $
 +
over each $  U _  \alpha  $
 +
and glue them together by means of the diffeomorphisms $  \widetilde \phi  _ {\alpha \beta }  : U _ {\alpha \beta }  \times \mathbf R \rightarrow U _ {\beta \alpha }  \times \mathbf R $,
 +
$  ( x , t ) \mapsto ( \phi _ {\alpha \beta }  ( x ) , (  \mathop{\rm det} ( J ( \phi _ {\alpha \beta }  ) ( x) ))  ^ {g} t ) $,  
 +
where $  J ( \phi _ {\alpha \beta }  ) ( x) : T _ {x} U _ {\alpha \beta }  \rightarrow T _ {\phi _ {\alpha \beta }  ( x) } U _ {\beta \alpha }  $
 +
is the Jacobian matrix of $  \phi _ {\alpha \beta }  $
 +
at $  x $.
  
 
Cf. also [[Differential invariant|Differential invariant]]. Note however that for differential invariants not only tensor bundles but also (tensor and exterior products of) higher jet bundles and their duals are considered.
 
Cf. also [[Differential invariant|Differential invariant]]. Note however that for differential invariants not only tensor bundles but also (tensor and exterior products of) higher jet bundles and their duals are considered.

Latest revision as of 17:33, 5 June 2020


A differentiable mapping $ \phi $ of a tensor bundle $ T $ on a manifold $ M $ into a tensor bundle $ T ^ { \prime } $ on the same manifold such that if $ p : T \rightarrow M $ and $ p ^ \prime : T ^ { \prime } \rightarrow M $ are the projections of $ T $ and $ T ^ { \prime } $ on $ M $, then

$$ p ^ \prime \phi = p . $$

The components of the tensor $ T ^ { \prime } = \phi ( T) $ in a local chart $ \xi $ on $ M $ depend on $ \xi $ only by means of the components of the tensor $ T $.

In particular, when $ T ^ { \prime } $ is reduced to the bundle of relative scalars of weight $ g $, the differential comitant is a differential invariant of weight $ g $.

Comments

Thus, a differential comitant is simply a vector bundle mapping from the tensor bundle $ T $ to the tensor bundle $ T ^ { \prime } $.

The bundle of relative scalars of weight $ g $ is constructed as follows. It is a line bundle. Let $ ( U _ \alpha ) _ \alpha $ be an atlas for the manifold $ M $ with coordinate change diffeomorphisms $ \phi _ {\alpha \beta } : U _ {\alpha \beta } \rightarrow U _ {\beta \alpha } $. Take the trivial line bundles $ U _ \alpha \times \mathbf R $ over each $ U _ \alpha $ and glue them together by means of the diffeomorphisms $ \widetilde \phi _ {\alpha \beta } : U _ {\alpha \beta } \times \mathbf R \rightarrow U _ {\beta \alpha } \times \mathbf R $, $ ( x , t ) \mapsto ( \phi _ {\alpha \beta } ( x ) , ( \mathop{\rm det} ( J ( \phi _ {\alpha \beta } ) ( x) )) ^ {g} t ) $, where $ J ( \phi _ {\alpha \beta } ) ( x) : T _ {x} U _ {\alpha \beta } \rightarrow T _ {\phi _ {\alpha \beta } ( x) } U _ {\beta \alpha } $ is the Jacobian matrix of $ \phi _ {\alpha \beta } $ at $ x $.

Cf. also Differential invariant. Note however that for differential invariants not only tensor bundles but also (tensor and exterior products of) higher jet bundles and their duals are considered.

How to Cite This Entry:
Differential comitant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Differential_comitant&oldid=14217
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article