Difference between revisions of "Darboux surfaces"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | d0301701.png | ||
+ | $#A+1 = 12 n = 0 | ||
+ | $#C+1 = 12 : ~/encyclopedia/old_files/data/D030/D.0300170 Darboux surfaces, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''wreath of'' | ''wreath of'' | ||
− | Surfaces associated with an [[Infinitesimal deformation|infinitesimal deformation]] of one of them; discovered by G. Darboux [[#References|[1]]]. Darboux surfaces form a "wreath" of 12 surfaces, with radius vectors | + | Surfaces associated with an [[Infinitesimal deformation|infinitesimal deformation]] of one of them; discovered by G. Darboux [[#References|[1]]]. Darboux surfaces form a "wreath" of 12 surfaces, with radius vectors $ \mathbf x _ {1} \dots \mathbf x _ {6} , \mathbf z _ {1} \dots \mathbf z _ {6} $ |
+ | satisfying the equations | ||
− | + | $$ | |
+ | d \mathbf z _ {i} = [ \mathbf z _ {i + 1 } , d \mathbf x _ {i} ] ,\ \ | ||
+ | d \mathbf x _ {i} = [ \mathbf x _ {i - 1 } , d \mathbf z _ {i} ] , | ||
+ | $$ | ||
− | + | $$ | |
+ | \mathbf z _ {i} - \mathbf x _ {i + 1 } = [ \mathbf z _ {i+ 1 } , \mathbf x _ {i} ],\ i = 1 \dots 6 , | ||
+ | $$ | ||
− | + | $$ | |
+ | \mathbf x _ {i + 6 } = \mathbf x _ {i} ,\ \mathbf z _ {i + 6 } = \mathbf z _ {i} ; | ||
+ | $$ | ||
− | where | + | where $ \mathbf z _ {i+} 1 $ |
+ | and $ \mathbf x _ {i} $ | ||
+ | are in [[Peterson correspondence|Peterson correspondence]], $ \mathbf z _ {i+} 1 $ | ||
+ | and $ \mathbf x _ {i-} 1 $ | ||
+ | are in [[Polar correspondence|polar correspondence]], while $ \mathbf z _ {i} $ | ||
+ | and $ \mathbf x _ {i+} 1 $ | ||
+ | are poles of a $ W $- | ||
+ | congruence. A similar "wreath" is formed by pairs of isometric surfaces of an elliptic space. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , '''4''' , Gauthier-Villars (1896)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.I. Shulikovskii, "Classical differential geometry in a tensor setting" , Moscow (1963) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , '''4''' , Gauthier-Villars (1896)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.I. Shulikovskii, "Classical differential geometry in a tensor setting" , Moscow (1963) (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | For the notion of a | + | For the notion of a $ W $- |
+ | congruence cf. [[Congruence of lines|Congruence of lines]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Fubini, E. Čech, "Introduction á la géométrie projective différentielle des surfaces" , Gauthier-Villars (1931)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Bol, "Projective Differentialgeometrie" , Vandenhoeck & Ruprecht (1954)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Fubini, E. Čech, "Introduction á la géométrie projective différentielle des surfaces" , Gauthier-Villars (1931)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Bol, "Projective Differentialgeometrie" , Vandenhoeck & Ruprecht (1954)</TD></TR></table> |
Latest revision as of 17:32, 5 June 2020
wreath of
Surfaces associated with an infinitesimal deformation of one of them; discovered by G. Darboux [1]. Darboux surfaces form a "wreath" of 12 surfaces, with radius vectors $ \mathbf x _ {1} \dots \mathbf x _ {6} , \mathbf z _ {1} \dots \mathbf z _ {6} $ satisfying the equations
$$ d \mathbf z _ {i} = [ \mathbf z _ {i + 1 } , d \mathbf x _ {i} ] ,\ \ d \mathbf x _ {i} = [ \mathbf x _ {i - 1 } , d \mathbf z _ {i} ] , $$
$$ \mathbf z _ {i} - \mathbf x _ {i + 1 } = [ \mathbf z _ {i+ 1 } , \mathbf x _ {i} ],\ i = 1 \dots 6 , $$
$$ \mathbf x _ {i + 6 } = \mathbf x _ {i} ,\ \mathbf z _ {i + 6 } = \mathbf z _ {i} ; $$
where $ \mathbf z _ {i+} 1 $ and $ \mathbf x _ {i} $ are in Peterson correspondence, $ \mathbf z _ {i+} 1 $ and $ \mathbf x _ {i-} 1 $ are in polar correspondence, while $ \mathbf z _ {i} $ and $ \mathbf x _ {i+} 1 $ are poles of a $ W $- congruence. A similar "wreath" is formed by pairs of isometric surfaces of an elliptic space.
References
[1] | G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , 4 , Gauthier-Villars (1896) |
[2] | V.I. Shulikovskii, "Classical differential geometry in a tensor setting" , Moscow (1963) (In Russian) |
Comments
For the notion of a $ W $- congruence cf. Congruence of lines.
References
[a1] | G. Fubini, E. Čech, "Introduction á la géométrie projective différentielle des surfaces" , Gauthier-Villars (1931) |
[a2] | G. Bol, "Projective Differentialgeometrie" , Vandenhoeck & Ruprecht (1954) |
Darboux surfaces. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Darboux_surfaces&oldid=18810