Difference between revisions of "Conjugate harmonic functions"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | c0250401.png | ||
+ | $#A+1 = 44 n = 0 | ||
+ | $#C+1 = 44 : ~/encyclopedia/old_files/data/C025/C.0205040 Conjugate harmonic functions, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''harmonically-conjugate functions'' | ''harmonically-conjugate functions'' | ||
− | A pair of real harmonic functions | + | A pair of real harmonic functions $ u $ |
+ | and $ v $ | ||
+ | which are the real and imaginary parts of some analytic function $ f = u + iv $ | ||
+ | of a complex variable. In the case of one complex variable $ z = x + iy $, | ||
+ | two harmonic functions $ u = u ( x, y) $ | ||
+ | and $ v = v ( x, y) $ | ||
+ | are conjugate in a domain $ D $ | ||
+ | of the complex plane $ \mathbf C $ | ||
+ | if and only if they satisfy the Cauchy–Riemann equations in $ D $: | ||
+ | |||
+ | $$ \tag{1 } | ||
+ | |||
+ | \frac{\partial u }{\partial x } | ||
+ | = \ | ||
+ | |||
+ | \frac{\partial v }{\partial y } | ||
+ | ,\ \ | ||
+ | |||
+ | \frac{\partial u }{\partial y } | ||
+ | = - | ||
+ | |||
+ | \frac{\partial v }{\partial x } | ||
+ | . | ||
+ | $$ | ||
+ | |||
+ | The roles of $ u $ | ||
+ | and $ v $ | ||
+ | in (1) are not symmetric: $ v $ | ||
+ | is a conjugate for $ u $ | ||
+ | but $ - u $, | ||
+ | and not $ u $, | ||
+ | is a conjugate for $ v $. | ||
+ | Given a harmonic function $ u = u ( x, y) $, | ||
+ | a local conjugate $ v = v ( x, y) $ | ||
+ | and a local complete analytic function $ f = u + iv $ | ||
+ | are easily determined up to a constant term. This can be done, for example, using the Goursat formula | ||
+ | |||
+ | $$ \tag{2 } | ||
+ | f ( z) = 2u | ||
+ | \left ( | ||
+ | { | ||
+ | \frac{z + \overline{z}\; {} ^ {0} }{2} | ||
+ | } ,\ | ||
+ | { | ||
+ | \frac{z - \overline{z}\; {} ^ {0} }{2i} | ||
+ | } | ||
+ | \right ) | ||
+ | - u ( x ^ {0} , y ^ {0} ) + ic | ||
+ | $$ | ||
+ | |||
+ | in a neighbourhood of some point $ z ^ {0} = x ^ {0} + iy ^ {0} $ | ||
+ | in the domain of definition of $ u $. | ||
+ | |||
+ | In the case of several complex variables $ z = x + iy = ( z _ {1} \dots z _ {n} ) = ( x _ {1} \dots x _ {n} ) + i ( y \dots y _ {n} ) $, | ||
+ | $ n > 1 $, | ||
+ | the Cauchy–Riemann system becomes overdetermined | ||
+ | |||
+ | $$ \tag{3 } | ||
+ | |||
+ | \frac{\partial u }{\partial x _ {k} } | ||
+ | = \ | ||
− | + | \frac{\partial v }{\partial y _ {k} } | |
+ | ,\ \ | ||
− | + | \frac{\partial u }{\partial y _ {k} } | |
+ | = - | ||
− | + | \frac{\partial v }{\partial x _ {k} } | |
+ | ,\ \ | ||
+ | k = 1 \dots n. | ||
+ | $$ | ||
− | + | It follows from (3) that for $ n > 1 $, | |
+ | $ u $ | ||
+ | can no longer be taken as an arbitrary harmonic function; it must belong to the subclass of pluriharmonic functions (cf. [[Pluriharmonic function|Pluriharmonic function]]). The conjugate pluriharmonic function $ v $ | ||
+ | can then be found using (2). | ||
− | + | There are various analogues of conjugate harmonic functions $ ( u , v) $ | |
+ | involving a vector function $ f = ( u _ {1} \dots u _ {m} ) $ | ||
+ | whose components $ u _ {j} = u _ {j} ( x _ {1} \dots x _ {n} ) $ | ||
+ | are real functions of real variables $ x _ {1} \dots x _ {n} $. | ||
+ | An example is a gradient system $ f = ( u _ {1} \dots u _ {n} ) $ | ||
+ | satisfying the generalized system of Cauchy–Riemann equations | ||
− | + | $$ \tag{4 } | |
+ | \sum _ {j = 1 } ^ { n } | ||
− | + | \frac{\partial u _ {j} }{\partial x _ {j} } | |
+ | = 0,\ \ | ||
− | + | \frac{\partial u _ {i} }{\partial x _ {j} } | |
+ | = \ | ||
− | + | \frac{\partial u _ {j} }{\partial x _ {i} } | |
+ | ,\ \ | ||
+ | i, j = 1 \dots n,\ | ||
+ | i \neq j, | ||
+ | $$ | ||
which can also be written in abbreviated form: | which can also be written in abbreviated form: | ||
− | + | $$ | |
+ | \mathop{\rm div} f = 0,\ \ | ||
+ | \mathop{\rm curl} f = 0. | ||
+ | $$ | ||
− | If the conditions (4) hold in a domain | + | If the conditions (4) hold in a domain $ D $ |
+ | of a Euclidean space $ \mathbf R ^ {n} $ | ||
+ | homeomorphic to a ball, then there is a harmonic function $ h $ | ||
+ | on $ D $ | ||
+ | such that $ f = \mathop{\rm grad} h $. | ||
+ | When $ n = 2 $, | ||
+ | it turns out that $ u _ {2} + iu _ {1} $ | ||
+ | is an analytic function of the variable $ z = x _ {1} + ix _ {2} $. | ||
+ | The behaviour of the solutions of (4) is in some respects similar to that of the Cauchy–Riemann system (1), for example in the study of boundary properties (see [[#References|[3]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.V. Bitsadze, "Fundamentals of the theory of analytic functions of a complex variable" , Moscow (1972) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.S. Vladimirov, "Methods of the theory of functions of several complex variables" , M.I.T. (1966) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.M. Stein, G. Weiss, "Introduction to Fourier analysis on Euclidean spaces" , Princeton Univ. Press (1971)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.V. Bitsadze, "Fundamentals of the theory of analytic functions of a complex variable" , Moscow (1972) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.S. Vladimirov, "Methods of the theory of functions of several complex variables" , M.I.T. (1966) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.M. Stein, G. Weiss, "Introduction to Fourier analysis on Euclidean spaces" , Princeton Univ. Press (1971)</TD></TR></table> |
Latest revision as of 17:46, 4 June 2020
harmonically-conjugate functions
A pair of real harmonic functions $ u $ and $ v $ which are the real and imaginary parts of some analytic function $ f = u + iv $ of a complex variable. In the case of one complex variable $ z = x + iy $, two harmonic functions $ u = u ( x, y) $ and $ v = v ( x, y) $ are conjugate in a domain $ D $ of the complex plane $ \mathbf C $ if and only if they satisfy the Cauchy–Riemann equations in $ D $:
$$ \tag{1 } \frac{\partial u }{\partial x } = \ \frac{\partial v }{\partial y } ,\ \ \frac{\partial u }{\partial y } = - \frac{\partial v }{\partial x } . $$
The roles of $ u $ and $ v $ in (1) are not symmetric: $ v $ is a conjugate for $ u $ but $ - u $, and not $ u $, is a conjugate for $ v $. Given a harmonic function $ u = u ( x, y) $, a local conjugate $ v = v ( x, y) $ and a local complete analytic function $ f = u + iv $ are easily determined up to a constant term. This can be done, for example, using the Goursat formula
$$ \tag{2 } f ( z) = 2u \left ( { \frac{z + \overline{z}\; {} ^ {0} }{2} } ,\ { \frac{z - \overline{z}\; {} ^ {0} }{2i} } \right ) - u ( x ^ {0} , y ^ {0} ) + ic $$
in a neighbourhood of some point $ z ^ {0} = x ^ {0} + iy ^ {0} $ in the domain of definition of $ u $.
In the case of several complex variables $ z = x + iy = ( z _ {1} \dots z _ {n} ) = ( x _ {1} \dots x _ {n} ) + i ( y \dots y _ {n} ) $, $ n > 1 $, the Cauchy–Riemann system becomes overdetermined
$$ \tag{3 } \frac{\partial u }{\partial x _ {k} } = \ \frac{\partial v }{\partial y _ {k} } ,\ \ \frac{\partial u }{\partial y _ {k} } = - \frac{\partial v }{\partial x _ {k} } ,\ \ k = 1 \dots n. $$
It follows from (3) that for $ n > 1 $, $ u $ can no longer be taken as an arbitrary harmonic function; it must belong to the subclass of pluriharmonic functions (cf. Pluriharmonic function). The conjugate pluriharmonic function $ v $ can then be found using (2).
There are various analogues of conjugate harmonic functions $ ( u , v) $ involving a vector function $ f = ( u _ {1} \dots u _ {m} ) $ whose components $ u _ {j} = u _ {j} ( x _ {1} \dots x _ {n} ) $ are real functions of real variables $ x _ {1} \dots x _ {n} $. An example is a gradient system $ f = ( u _ {1} \dots u _ {n} ) $ satisfying the generalized system of Cauchy–Riemann equations
$$ \tag{4 } \sum _ {j = 1 } ^ { n } \frac{\partial u _ {j} }{\partial x _ {j} } = 0,\ \ \frac{\partial u _ {i} }{\partial x _ {j} } = \ \frac{\partial u _ {j} }{\partial x _ {i} } ,\ \ i, j = 1 \dots n,\ i \neq j, $$
which can also be written in abbreviated form:
$$ \mathop{\rm div} f = 0,\ \ \mathop{\rm curl} f = 0. $$
If the conditions (4) hold in a domain $ D $ of a Euclidean space $ \mathbf R ^ {n} $ homeomorphic to a ball, then there is a harmonic function $ h $ on $ D $ such that $ f = \mathop{\rm grad} h $. When $ n = 2 $, it turns out that $ u _ {2} + iu _ {1} $ is an analytic function of the variable $ z = x _ {1} + ix _ {2} $. The behaviour of the solutions of (4) is in some respects similar to that of the Cauchy–Riemann system (1), for example in the study of boundary properties (see [3]).
References
[1] | A.V. Bitsadze, "Fundamentals of the theory of analytic functions of a complex variable" , Moscow (1972) (In Russian) |
[2] | V.S. Vladimirov, "Methods of the theory of functions of several complex variables" , M.I.T. (1966) (Translated from Russian) |
[3] | E.M. Stein, G. Weiss, "Introduction to Fourier analysis on Euclidean spaces" , Princeton Univ. Press (1971) |
Conjugate harmonic functions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Conjugate_harmonic_functions&oldid=17885