|
|
Line 1: |
Line 1: |
− | A characteristic of a conformal mapping of a simply-connected domain, defined as follows: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c0248001.png" /> be a simply-connected domain with more than one boundary point in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c0248002.png" />-plane. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c0248003.png" /> be a point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c0248004.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c0248005.png" />, then there exists a unique function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c0248006.png" />, holomorphic in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c0248007.png" />, normalized by the conditions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c0248008.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c0248009.png" />, that maps <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480010.png" /> univalently onto the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480011.png" />. The radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480012.png" /> of this disc is called the conformal radius of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480013.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480014.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480015.png" />, then there exists a unique function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480016.png" />, holomorphic in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480017.png" /> except at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480018.png" />, that, in a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480019.png" />, has a Laurent expansion of the form
| + | <!-- |
| + | c0248001.png |
| + | $#A+1 = 79 n = 0 |
| + | $#C+1 = 79 : ~/encyclopedia/old_files/data/C024/C.0204800 Conformal radius of a domain |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480020.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | and that maps <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480021.png" /> univalently onto a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480022.png" />. In this case the quantity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480023.png" /> is called the conformal radius of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480024.png" /> relative to infinity. The conformal radius of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480026.png" />, relative to infinity is equal to the [[Transfinite diameter|transfinite diameter]] of the boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480027.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480028.png" /> and to the [[Capacity|capacity]] of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480029.png" />.
| + | A characteristic of a conformal mapping of a simply-connected domain, defined as follows: Let $ D $ |
| + | be a simply-connected domain with more than one boundary point in the $ z $- |
| + | plane. Let $ z _ {0} $ |
| + | be a point of $ D $. |
| + | If $ z _ {0} \neq \infty $, |
| + | then there exists a unique function $ w = f ( z) $, |
| + | holomorphic in $ D $, |
| + | normalized by the conditions $ f ( z _ {0} ) = 0 $, |
| + | $ f ^ { \prime } ( z _ {0} ) = 1 $, |
| + | that maps $ D $ |
| + | univalently onto the disc $ \{ {w } : {| w | < r } \} $. |
| + | The radius $ r = r ( z _ {0} , D ) $ |
| + | of this disc is called the conformal radius of $ D $ |
| + | relative to $ z _ {0} $. |
| + | If $ \infty \in D $, |
| + | then there exists a unique function $ w = f ( z) $, |
| + | holomorphic in $ D $ |
| + | except at $ \infty $, |
| + | that, in a neighbourhood of $ \infty $, |
| + | has a Laurent expansion of the form |
| | | |
− | An extension of the notion of the conformal radius of a domain to the case of an arbitrary domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480030.png" /> in the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480031.png" />-plane is that of the interior radius of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480032.png" /> relative to a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480033.png" /> (in the non-Soviet literature the term "interior radius" is used primarily in the case of a simply-connected domain). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480034.png" /> be a domain in the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480035.png" />-plane, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480036.png" /> be a point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480037.png" /> and suppose that a Green function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480038.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480039.png" /> with pole at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480040.png" /> exists. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480041.png" /> be the Robin constant of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480042.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480043.png" />, i.e.
| + | $$ |
| + | f ( z) = z + c _ {0} + c _ {1} z ^ {-} 1 + \dots , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480044.png" /></td> </tr></table>
| + | and that maps $ D $ |
| + | univalently onto a domain $ \{ {w } : {| w | > r } \} $. |
| + | In this case the quantity $ r = r ( \infty , D ) $ |
| + | is called the conformal radius of $ D $ |
| + | relative to infinity. The conformal radius of $ D $, |
| + | $ \infty \in D $, |
| + | relative to infinity is equal to the [[Transfinite diameter|transfinite diameter]] of the boundary $ C $ |
| + | of $ D $ |
| + | and to the [[Capacity|capacity]] of the set $ C $. |
| | | |
− | The quantity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480045.png" /> is called the interior radius of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480046.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480047.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480048.png" /> is a simply-connected domain whose boundary contains at least two points, then the interior radius of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480049.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480050.png" /> is equal to the conformal radius of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480051.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480052.png" />. The interior radius of a domain is non-decreasing as the domain increases: If the domains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480053.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480054.png" /> have Green functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480055.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480056.png" />, respectively, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480057.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480058.png" />, then the following inequality holds for their interior radii <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480059.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480060.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480061.png" />:
| + | An extension of the notion of the conformal radius of a domain to the case of an arbitrary domain $ D $ |
| + | in the complex $ z $- |
| + | plane is that of the interior radius of $ D $ |
| + | relative to a point $ z _ {0} \in D $( |
| + | in the non-Soviet literature the term "interior radius" is used primarily in the case of a simply-connected domain). Let $ D $ |
| + | be a domain in the complex $ z $- |
| + | plane, let $ z _ {0} $ |
| + | be a point of $ D $ |
| + | and suppose that a Green function $ g ( z , z _ {0} ) $ |
| + | for $ D $ |
| + | with pole at $ z _ {0} $ |
| + | exists. Let $ \gamma $ |
| + | be the Robin constant of $ D $ |
| + | with respect to $ z _ {0} $, |
| + | i.e. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480062.png" /></td> </tr></table>
| + | $$ |
| + | \gamma = \ |
| + | \left \{ |
| + | \begin{array}{lll} |
| + | \lim\limits _ {z \rightarrow z _ {0} } [ g ( z , z _ {0} ) + \mathop{\rm ln} | |
| + | z - z _ {0} | ] & \textrm{ for } &z _ {0} \neq \infty , \\ |
| + | \lim\limits _ {z \rightarrow \infty } [ g ( z , \infty ) - \mathop{\rm ln} | z | ] & \textrm{ for } &z _ {0} = \infty . \\ |
| + | \end{array} |
| | | |
− | The interior radius of an arbitrary domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480063.png" /> relative to a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480064.png" /> is defined as the least upper bound of the set of interior radii at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480065.png" /> of all domains containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480066.png" />, contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480067.png" /> and having a Green function. In accordance with this definition, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480068.png" /> does not have a generalized Green function, then the interior radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480069.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480070.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480071.png" /> is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480072.png" />. | + | $$ |
| + | |
| + | The quantity $ r = {e ^ \gamma } $ |
| + | is called the interior radius of $ D $ |
| + | relative to $ z _ {0} $. |
| + | If $ D $ |
| + | is a simply-connected domain whose boundary contains at least two points, then the interior radius of $ D $ |
| + | relative to $ z _ {0} \in D $ |
| + | is equal to the conformal radius of $ D $ |
| + | relative to $ z _ {0} $. |
| + | The interior radius of a domain is non-decreasing as the domain increases: If the domains $ D $, |
| + | $ D _ {1} $ |
| + | have Green functions $ g ( z _ {1} , z _ {0} ) $, |
| + | $ g _ {1} ( z , z _ {0} ) $, |
| + | respectively, if $ z _ {0} \in D $ |
| + | and if $ D \subset D _ {1} $, |
| + | then the following inequality holds for their interior radii $ r $, |
| + | $ r _ {1} $ |
| + | at $ z _ {0} $: |
| + | |
| + | $$ |
| + | r \leq r _ {1} . |
| + | $$ |
| + | |
| + | The interior radius of an arbitrary domain $ D $ |
| + | relative to a point $ z _ {0} \in D $ |
| + | is defined as the least upper bound of the set of interior radii at $ z _ {0} $ |
| + | of all domains containing $ z _ {0} $, |
| + | contained in $ D $ |
| + | and having a Green function. In accordance with this definition, if $ D $ |
| + | does not have a generalized Green function, then the interior radius $ r $ |
| + | of $ D $ |
| + | at $ z _ {0} \in D $ |
| + | is equal to $ \infty $. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.I. Smirnov, A.N. Lebedev, "Functions of a complex variable" , M.I.T. (1968) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> W.K. Hayman, "Multivalent functions" , Cambridge Univ. Press (1958)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.I. Smirnov, A.N. Lebedev, "Functions of a complex variable" , M.I.T. (1968) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> W.K. Hayman, "Multivalent functions" , Cambridge Univ. Press (1958)</TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
− | In [[#References|[a2]]] the conformal radius of a compact connected set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480073.png" /> in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480074.png" />-plane is defined as the conformal radius of its complement relative to infinity (as defined above). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480075.png" /> is contained in a disc of radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480076.png" /> and has diameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480077.png" />, then | + | In [[#References|[a2]]] the conformal radius of a compact connected set $ E $ |
| + | in the $ z $- |
| + | plane is defined as the conformal radius of its complement relative to infinity (as defined above). If $ E $ |
| + | is contained in a disc of radius $ r $ |
| + | and has diameter $ d \geq r $, |
| + | then |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480078.png" /></td> </tr></table>
| + | $$ |
| + | \rho \leq r \leq 4 \rho , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024800/c02480079.png" /> is its conformal radius (in the sense of [[#References|[a2]]], cf. [[#References|[a2]]]). | + | where $ \rho $ |
| + | is its conformal radius (in the sense of [[#References|[a2]]], cf. [[#References|[a2]]]). |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Tsuji, "Potential theory in modern function theory" , Chelsea, reprint (1975)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.L. Duren, "Univalent functions" , Springer (1983) pp. Sect. 10.11</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Tsuji, "Potential theory in modern function theory" , Chelsea, reprint (1975)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.L. Duren, "Univalent functions" , Springer (1983) pp. Sect. 10.11</TD></TR></table> |
A characteristic of a conformal mapping of a simply-connected domain, defined as follows: Let $ D $
be a simply-connected domain with more than one boundary point in the $ z $-
plane. Let $ z _ {0} $
be a point of $ D $.
If $ z _ {0} \neq \infty $,
then there exists a unique function $ w = f ( z) $,
holomorphic in $ D $,
normalized by the conditions $ f ( z _ {0} ) = 0 $,
$ f ^ { \prime } ( z _ {0} ) = 1 $,
that maps $ D $
univalently onto the disc $ \{ {w } : {| w | < r } \} $.
The radius $ r = r ( z _ {0} , D ) $
of this disc is called the conformal radius of $ D $
relative to $ z _ {0} $.
If $ \infty \in D $,
then there exists a unique function $ w = f ( z) $,
holomorphic in $ D $
except at $ \infty $,
that, in a neighbourhood of $ \infty $,
has a Laurent expansion of the form
$$
f ( z) = z + c _ {0} + c _ {1} z ^ {-} 1 + \dots ,
$$
and that maps $ D $
univalently onto a domain $ \{ {w } : {| w | > r } \} $.
In this case the quantity $ r = r ( \infty , D ) $
is called the conformal radius of $ D $
relative to infinity. The conformal radius of $ D $,
$ \infty \in D $,
relative to infinity is equal to the transfinite diameter of the boundary $ C $
of $ D $
and to the capacity of the set $ C $.
An extension of the notion of the conformal radius of a domain to the case of an arbitrary domain $ D $
in the complex $ z $-
plane is that of the interior radius of $ D $
relative to a point $ z _ {0} \in D $(
in the non-Soviet literature the term "interior radius" is used primarily in the case of a simply-connected domain). Let $ D $
be a domain in the complex $ z $-
plane, let $ z _ {0} $
be a point of $ D $
and suppose that a Green function $ g ( z , z _ {0} ) $
for $ D $
with pole at $ z _ {0} $
exists. Let $ \gamma $
be the Robin constant of $ D $
with respect to $ z _ {0} $,
i.e.
$$
\gamma = \
\left \{
\begin{array}{lll}
\lim\limits _ {z \rightarrow z _ {0} } [ g ( z , z _ {0} ) + \mathop{\rm ln} |
z - z _ {0} | ] & \textrm{ for } &z _ {0} \neq \infty , \\
\lim\limits _ {z \rightarrow \infty } [ g ( z , \infty ) - \mathop{\rm ln} | z | ] & \textrm{ for } &z _ {0} = \infty . \\
\end{array}
$$
The quantity $ r = {e ^ \gamma } $
is called the interior radius of $ D $
relative to $ z _ {0} $.
If $ D $
is a simply-connected domain whose boundary contains at least two points, then the interior radius of $ D $
relative to $ z _ {0} \in D $
is equal to the conformal radius of $ D $
relative to $ z _ {0} $.
The interior radius of a domain is non-decreasing as the domain increases: If the domains $ D $,
$ D _ {1} $
have Green functions $ g ( z _ {1} , z _ {0} ) $,
$ g _ {1} ( z , z _ {0} ) $,
respectively, if $ z _ {0} \in D $
and if $ D \subset D _ {1} $,
then the following inequality holds for their interior radii $ r $,
$ r _ {1} $
at $ z _ {0} $:
$$
r \leq r _ {1} .
$$
The interior radius of an arbitrary domain $ D $
relative to a point $ z _ {0} \in D $
is defined as the least upper bound of the set of interior radii at $ z _ {0} $
of all domains containing $ z _ {0} $,
contained in $ D $
and having a Green function. In accordance with this definition, if $ D $
does not have a generalized Green function, then the interior radius $ r $
of $ D $
at $ z _ {0} \in D $
is equal to $ \infty $.
References
[1] | G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian) |
[2] | V.I. Smirnov, A.N. Lebedev, "Functions of a complex variable" , M.I.T. (1968) (Translated from Russian) |
[3] | W.K. Hayman, "Multivalent functions" , Cambridge Univ. Press (1958) |
In [a2] the conformal radius of a compact connected set $ E $
in the $ z $-
plane is defined as the conformal radius of its complement relative to infinity (as defined above). If $ E $
is contained in a disc of radius $ r $
and has diameter $ d \geq r $,
then
$$
\rho \leq r \leq 4 \rho ,
$$
where $ \rho $
is its conformal radius (in the sense of [a2], cf. [a2]).
References
[a1] | M. Tsuji, "Potential theory in modern function theory" , Chelsea, reprint (1975) |
[a2] | P.L. Duren, "Univalent functions" , Springer (1983) pp. Sect. 10.11 |