Difference between revisions of "Conditional distribution"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | c0244801.png | ||
+ | $#A+1 = 58 n = 0 | ||
+ | $#C+1 = 58 : ~/encyclopedia/old_files/data/C024/C.0204480 Conditional distribution | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A function of an elementary event and a Borel set, which for each fixed elementary event is a [[Probability distribution|probability distribution]] and for each fixed Borel set is a [[Conditional probability|conditional probability]]. | A function of an elementary event and a Borel set, which for each fixed elementary event is a [[Probability distribution|probability distribution]] and for each fixed Borel set is a [[Conditional probability|conditional probability]]. | ||
− | Let | + | Let $ ( \Omega , {\mathcal A} , {\mathsf P} ) $ |
+ | be a probability space, $ \mathfrak B $ | ||
+ | the $ \sigma $- | ||
+ | algebra of Borel sets on the line, $ X $ | ||
+ | a random variable defined on $ ( \Omega , {\mathcal A} ) $ | ||
+ | and $ \mathfrak F $ | ||
+ | a sub- $ \sigma $- | ||
+ | algebra of $ {\mathcal A} $. | ||
+ | A function $ Q ( \omega , B ) $ | ||
+ | defined on $ \Omega \times \mathfrak B $ | ||
+ | is called a (regular) conditional distribution of the random variable $ X $ | ||
+ | with respect to the $ \sigma $- | ||
+ | algebra $ \mathfrak F $ | ||
+ | if: | ||
+ | |||
+ | a) for fixed $ B \in \mathfrak B $ | ||
+ | the function $ Q ( \omega , B ) $ | ||
+ | is $ \mathfrak F $- | ||
+ | measurable; | ||
− | + | b) with probability one, for fixed $ \omega $ | |
+ | the function $ Q ( \omega , B ) $ | ||
+ | is a probability measure on $ \mathfrak B $; | ||
− | + | c) for arbitrary $ F \in \mathfrak F $, | |
− | + | $$ | |
+ | \int\limits _ { F } Q | ||
+ | ( \omega , B ) {\mathsf P} | ||
+ | ( d \omega ) = {\mathsf P} | ||
+ | \{ ( X \in B ) \cap F \} . | ||
+ | $$ | ||
− | + | Similarly one can define the conditional distribution of a random element $ \mathfrak J $ | |
+ | with values in an arbitrary measurable space $ ( \mathfrak X , \mathfrak B ) $. | ||
+ | If $ \mathfrak X $ | ||
+ | is a complete separable metric space and $ \mathfrak B $ | ||
+ | is the $ \sigma $- | ||
+ | algebra of Borel sets, then the conditional distribution of the random element $ \mathfrak J $ | ||
+ | relative to any $ \sigma $- | ||
+ | algebra $ \mathfrak F $, | ||
+ | $ \mathfrak F \subset {\mathcal A} $, | ||
+ | exists. | ||
− | + | The function $ F _ {X} ( x \mid \mathfrak F ) = Q ( \omega , ( - \infty , x ] ) $ | |
+ | is called the conditional distribution function of the random variable $ X $ | ||
+ | with respect to the $ \sigma $- | ||
+ | algebra $ \mathfrak F $. | ||
− | The function | + | The conditional distribution (conditional distribution function) of a random variable $ X $ |
+ | with respect to a random variable $ Y $ | ||
+ | is defined as the conditional distribution (conditional distribution function) of $ X $ | ||
+ | with respect to the $ \sigma $- | ||
+ | algebra generated by $ Y $. | ||
− | The conditional distribution ( | + | The conditional distribution function $ F _ {X} ( x \mid Y ) $ |
+ | of a random variable $ X $ | ||
+ | with respect to $ Y $ | ||
+ | is a Borel function of $ Y $; | ||
+ | for $ Y = y $ | ||
+ | its value $ F _ {X} ( x \mid Y = y ) $ | ||
+ | is called the conditional distribution function of $ X $ | ||
+ | for a fixed value of $ Y $. | ||
+ | If $ Y $ | ||
+ | has a density $ f _ {Y} ( y) $, | ||
+ | then | ||
− | + | $$ | |
+ | F _ {X} ( x \mid Y = y ) = \ | ||
− | + | \frac{1}{f _ {Y} ( y) } | |
− | where | + | \frac \partial {\partial y } |
+ | |||
+ | F _ {X,Y} ( x , y ) , | ||
+ | $$ | ||
+ | |||
+ | where $ F _ {X,Y} ( x , y ) $ | ||
+ | is the joint distribution function of $ X $ | ||
+ | and $ Y $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> Yu.V. [Yu.V. Prokhorov] Prohorov, Yu.A. Rozanov, "Probability theory, basic concepts. Limit theorems, random processes" , Springer (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Loève, "Probability theory" , Princeton Univ. Press (1963)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.I. [I.I. Gikhman] Gihman, A.V. [A.V. Skorokhod] Skorohod, "The theory of stochastic processes" , '''1''' , Springer (1974) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> Yu.V. [Yu.V. Prokhorov] Prohorov, Yu.A. Rozanov, "Probability theory, basic concepts. Limit theorems, random processes" , Springer (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Loève, "Probability theory" , Princeton Univ. Press (1963)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.I. [I.I. Gikhman] Gihman, A.V. [A.V. Skorokhod] Skorohod, "The theory of stochastic processes" , '''1''' , Springer (1974) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | Another definition of a conditional distribution is as a function | + | Another definition of a conditional distribution is as a function $ f ( \omega , B ) $ |
+ | of a [[Regular event|regular event]] and a [[Borel set|Borel set]] such that, for fixed $ \omega $, | ||
+ | $ f ( \omega , \cdot ) $ | ||
+ | is a [[Probability measure|probability measure]] and, for fixed $ B $, | ||
+ | $ f ( \cdot , B ) $ | ||
+ | is a [[Measurable function|measurable function]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L.P. Breiman, "Probability" , Addison-Wesley (1968)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L.P. Breiman, "Probability" , Addison-Wesley (1968)</TD></TR></table> |
Latest revision as of 17:46, 4 June 2020
A function of an elementary event and a Borel set, which for each fixed elementary event is a probability distribution and for each fixed Borel set is a conditional probability.
Let $ ( \Omega , {\mathcal A} , {\mathsf P} ) $ be a probability space, $ \mathfrak B $ the $ \sigma $- algebra of Borel sets on the line, $ X $ a random variable defined on $ ( \Omega , {\mathcal A} ) $ and $ \mathfrak F $ a sub- $ \sigma $- algebra of $ {\mathcal A} $. A function $ Q ( \omega , B ) $ defined on $ \Omega \times \mathfrak B $ is called a (regular) conditional distribution of the random variable $ X $ with respect to the $ \sigma $- algebra $ \mathfrak F $ if:
a) for fixed $ B \in \mathfrak B $ the function $ Q ( \omega , B ) $ is $ \mathfrak F $- measurable;
b) with probability one, for fixed $ \omega $ the function $ Q ( \omega , B ) $ is a probability measure on $ \mathfrak B $;
c) for arbitrary $ F \in \mathfrak F $,
$$ \int\limits _ { F } Q ( \omega , B ) {\mathsf P} ( d \omega ) = {\mathsf P} \{ ( X \in B ) \cap F \} . $$
Similarly one can define the conditional distribution of a random element $ \mathfrak J $ with values in an arbitrary measurable space $ ( \mathfrak X , \mathfrak B ) $. If $ \mathfrak X $ is a complete separable metric space and $ \mathfrak B $ is the $ \sigma $- algebra of Borel sets, then the conditional distribution of the random element $ \mathfrak J $ relative to any $ \sigma $- algebra $ \mathfrak F $, $ \mathfrak F \subset {\mathcal A} $, exists.
The function $ F _ {X} ( x \mid \mathfrak F ) = Q ( \omega , ( - \infty , x ] ) $ is called the conditional distribution function of the random variable $ X $ with respect to the $ \sigma $- algebra $ \mathfrak F $.
The conditional distribution (conditional distribution function) of a random variable $ X $ with respect to a random variable $ Y $ is defined as the conditional distribution (conditional distribution function) of $ X $ with respect to the $ \sigma $- algebra generated by $ Y $.
The conditional distribution function $ F _ {X} ( x \mid Y ) $ of a random variable $ X $ with respect to $ Y $ is a Borel function of $ Y $; for $ Y = y $ its value $ F _ {X} ( x \mid Y = y ) $ is called the conditional distribution function of $ X $ for a fixed value of $ Y $. If $ Y $ has a density $ f _ {Y} ( y) $, then
$$ F _ {X} ( x \mid Y = y ) = \ \frac{1}{f _ {Y} ( y) } \frac \partial {\partial y } F _ {X,Y} ( x , y ) , $$
where $ F _ {X,Y} ( x , y ) $ is the joint distribution function of $ X $ and $ Y $.
References
[1] | Yu.V. [Yu.V. Prokhorov] Prohorov, Yu.A. Rozanov, "Probability theory, basic concepts. Limit theorems, random processes" , Springer (1969) (Translated from Russian) |
[2] | M. Loève, "Probability theory" , Princeton Univ. Press (1963) |
[3] | I.I. [I.I. Gikhman] Gihman, A.V. [A.V. Skorokhod] Skorohod, "The theory of stochastic processes" , 1 , Springer (1974) (Translated from Russian) |
Comments
Another definition of a conditional distribution is as a function $ f ( \omega , B ) $ of a regular event and a Borel set such that, for fixed $ \omega $, $ f ( \omega , \cdot ) $ is a probability measure and, for fixed $ B $, $ f ( \cdot , B ) $ is a measurable function.
References
[a1] | L.P. Breiman, "Probability" , Addison-Wesley (1968) |
Conditional distribution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Conditional_distribution&oldid=11344