Namespaces
Variants
Actions

Difference between revisions of "Cohomology group"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
''of a cochain complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c0230801.png" /> of Abelian groups''
+
<!--
 +
c0230801.png
 +
$#A+1 = 30 n = 0
 +
$#C+1 = 30 : ~/encyclopedia/old_files/data/C023/C.0203080 Cohomology group
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The graded group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c0230802.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c0230803.png" /> (see [[Complex|Complex]]). The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c0230804.png" /> is called the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c0230805.png" />-dimensional, or the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c0230806.png" />-th, cohomology group of the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c0230807.png" />. This concept is dual to that of homology group of a chain complex (see [[Homology of a complex|Homology of a complex]]).
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
''of a cochain complex  $  K ^ { . } = ( K  ^ {n} , d _ {n} ) $
 +
of Abelian groups''
 +
 
 +
The graded group $  H ^ { . } ( K) = \oplus H  ^ {n} ( K) $,  
 +
where $  H  ^ {n} ( K) = \mathop{\rm Ker}  d _ {n+} 1 / \mathop{\rm Im}  d _ {n} $(
 +
see [[Complex|Complex]]). The group $  H  ^ {n} ( K) $
 +
is called the $  n $-
 +
dimensional, or the $  n $-
 +
th, cohomology group of the complex $  K ^ { . } $.  
 +
This concept is dual to that of homology group of a chain complex (see [[Homology of a complex|Homology of a complex]]).
  
 
In the category of modules, the cohomology module of a cochain complex is also called a cohomology group.
 
In the category of modules, the cohomology module of a cochain complex is also called a cohomology group.
  
The cohomology group of a chain complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c0230808.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c0230809.png" />-modules with coefficients, or values, in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c02308010.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c02308011.png" /> is an associative ring with identity and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c02308012.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c02308013.png" />-module, is the cohomology group
+
The cohomology group of a chain complex $  K _ {. }  = ( K _ {n} , d _ {n} ) $
 +
of $  \Lambda $-
 +
modules with coefficients, or values, in $  A $,  
 +
where $  \Lambda $
 +
is an associative ring with identity and $  A $
 +
is a $  \Lambda $-
 +
module, is the cohomology group
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c02308014.png" /></td> </tr></table>
+
$$
 +
H ^ { . } ( K _ {. }  , A )  =  \oplus H  ^ {n} ( K _ {. }  , A )
 +
$$
  
 
of the cochain complex
 
of the cochain complex
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c02308015.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm Hom} _  \Lambda  ( K _ {. }  , A )  = \
 +
(  \mathop{\rm Hom} _  \Lambda  ( K _ {n} , A ) , d _ {n}  ^ {*} ) ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c02308016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c02308017.png" />. A special case of this construction is the cohomology group of a polyhedron, the singular cohomology group of a topological space, and the cohomology groups of groups, algebras, etc.
+
where $  d _ {n}  ^ {*} ( \gamma ) = \gamma \circ d _ {n} $,
 +
$  \gamma \in  \mathop{\rm Hom} ( K _ {n} , A ) $.  
 +
A special case of this construction is the cohomology group of a polyhedron, the singular cohomology group of a topological space, and the cohomology groups of groups, algebras, etc.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c02308018.png" /> is an exact sequence of complexes of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c02308019.png" />-modules, where the images of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c02308020.png" /> are direct factors in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c02308021.png" />, the following exact sequence arises in a natural way:
+
If 0 \rightarrow K _ {. }  \rightarrow  ^  \alpha  L _ { . }  \rightarrow  ^  \beta  M _ {. }  \rightarrow 0 $
 +
is an exact sequence of complexes of $  \Lambda $-
 +
modules, where the images of the $  K _ {n} $
 +
are direct factors in $  L _ {n} $,  
 +
the following exact sequence arises in a natural way:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c02308022.png" /></td> </tr></table>
+
$$
 +
{} \dots \rightarrow  H  ^ {n} ( M _ {. }  , A )  \rightarrow ^ { {\alpha  ^ {*}} } \
 +
H  ^ {n} ( L _ { . }  , A )  \rightarrow ^ { {\beta  ^ {*}} } \
 +
H  ^ {n} ( K _ {. }  , A )  \rightarrow ^ { {d  ^ {*}} }
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c02308023.png" /></td> </tr></table>
+
$$
 +
\rightarrow ^ { {d  ^ {*}} }  H  ^ {n+} 1 ( M _ {. }  , A )  \rightarrow \dots .
 +
$$
  
On the other hand, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c02308024.png" /> is a complex of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c02308025.png" />-modules, and all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c02308026.png" /> are projective, then with every exact sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c02308027.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c02308028.png" />-modules is associated an exact sequence of cohomology groups:
+
On the other hand, if $  K _ {. }  $
 +
is a complex of $  \Lambda $-
 +
modules, and all $  K _ {n} $
 +
are projective, then with every exact sequence 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 $
 +
of $  \Lambda $-
 +
modules is associated an exact sequence of cohomology groups:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c02308029.png" /></td> </tr></table>
+
$$
 +
{} \dots \rightarrow  H  ^ {n} ( K _ {. }  , A )  \rightarrow  H  ^ {n} ( K _ {. }  ,\
 +
B )  \rightarrow  H  ^ {n} ( K _ {. }  , C ) \rightarrow
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023080/c02308030.png" /></td> </tr></table>
+
$$
 +
\rightarrow \
 +
H  ^ {n+} 1 ( K _ {. }  , A )  \rightarrow \dots .
 +
$$
  
 
See [[Homology group|Homology group]]; [[Cohomology|Cohomology]] (for the cohomology group of a topological space).
 
See [[Homology group|Homology group]]; [[Cohomology|Cohomology]] (for the cohomology group of a topological space).
Line 31: Line 84:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Cartan,  S. Eilenberg,  "Homological algebra" , Princeton Univ. Press  (1956)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  R. Godement,  "Topologie algébrique et théorie des faisceaux" , Hermann  (1958)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  S. MacLane,  "Homology" , Springer  (1963)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Cartan,  S. Eilenberg,  "Homological algebra" , Princeton Univ. Press  (1956)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  R. Godement,  "Topologie algébrique et théorie des faisceaux" , Hermann  (1958)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  S. MacLane,  "Homology" , Springer  (1963)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
The exact sequence of cohomology groups given above is often referred to as a long exact sequence of cohomology groups associated to a short exact sequence of complexes.
 
The exact sequence of cohomology groups given above is often referred to as a long exact sequence of cohomology groups associated to a short exact sequence of complexes.

Latest revision as of 17:45, 4 June 2020


of a cochain complex $ K ^ { . } = ( K ^ {n} , d _ {n} ) $ of Abelian groups

The graded group $ H ^ { . } ( K) = \oplus H ^ {n} ( K) $, where $ H ^ {n} ( K) = \mathop{\rm Ker} d _ {n+} 1 / \mathop{\rm Im} d _ {n} $( see Complex). The group $ H ^ {n} ( K) $ is called the $ n $- dimensional, or the $ n $- th, cohomology group of the complex $ K ^ { . } $. This concept is dual to that of homology group of a chain complex (see Homology of a complex).

In the category of modules, the cohomology module of a cochain complex is also called a cohomology group.

The cohomology group of a chain complex $ K _ {. } = ( K _ {n} , d _ {n} ) $ of $ \Lambda $- modules with coefficients, or values, in $ A $, where $ \Lambda $ is an associative ring with identity and $ A $ is a $ \Lambda $- module, is the cohomology group

$$ H ^ { . } ( K _ {. } , A ) = \oplus H ^ {n} ( K _ {. } , A ) $$

of the cochain complex

$$ \mathop{\rm Hom} _ \Lambda ( K _ {. } , A ) = \ ( \mathop{\rm Hom} _ \Lambda ( K _ {n} , A ) , d _ {n} ^ {*} ) , $$

where $ d _ {n} ^ {*} ( \gamma ) = \gamma \circ d _ {n} $, $ \gamma \in \mathop{\rm Hom} ( K _ {n} , A ) $. A special case of this construction is the cohomology group of a polyhedron, the singular cohomology group of a topological space, and the cohomology groups of groups, algebras, etc.

If $ 0 \rightarrow K _ {. } \rightarrow ^ \alpha L _ { . } \rightarrow ^ \beta M _ {. } \rightarrow 0 $ is an exact sequence of complexes of $ \Lambda $- modules, where the images of the $ K _ {n} $ are direct factors in $ L _ {n} $, the following exact sequence arises in a natural way:

$$ {} \dots \rightarrow H ^ {n} ( M _ {. } , A ) \rightarrow ^ { {\alpha ^ {*}} } \ H ^ {n} ( L _ { . } , A ) \rightarrow ^ { {\beta ^ {*}} } \ H ^ {n} ( K _ {. } , A ) \rightarrow ^ { {d ^ {*}} } $$

$$ \rightarrow ^ { {d ^ {*}} } H ^ {n+} 1 ( M _ {. } , A ) \rightarrow \dots . $$

On the other hand, if $ K _ {. } $ is a complex of $ \Lambda $- modules, and all $ K _ {n} $ are projective, then with every exact sequence $ 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 $ of $ \Lambda $- modules is associated an exact sequence of cohomology groups:

$$ {} \dots \rightarrow H ^ {n} ( K _ {. } , A ) \rightarrow H ^ {n} ( K _ {. } ,\ B ) \rightarrow H ^ {n} ( K _ {. } , C ) \rightarrow $$

$$ \rightarrow \ H ^ {n+} 1 ( K _ {. } , A ) \rightarrow \dots . $$

See Homology group; Cohomology (for the cohomology group of a topological space).

References

[1] H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956)
[2] R. Godement, "Topologie algébrique et théorie des faisceaux" , Hermann (1958)
[3] S. MacLane, "Homology" , Springer (1963)

Comments

The exact sequence of cohomology groups given above is often referred to as a long exact sequence of cohomology groups associated to a short exact sequence of complexes.

How to Cite This Entry:
Cohomology group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cohomology_group&oldid=18382
This article was adapted from an original article by L.V. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article