Difference between revisions of "Chebyshev constant"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | c0218501.png | ||
+ | $#A+1 = 32 n = 0 | ||
+ | $#C+1 = 32 : ~/encyclopedia/old_files/data/C021/C.0201850 Chebyshev constant | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A numerical invariant $ \tau = \tau ( E) $ | |
+ | of a compact set $ E $ | ||
+ | in the complex plane that is used in the theory of best approximation. | ||
− | of | + | Let $ K _ {n} $ |
+ | be the class of all polynomials | ||
− | + | $$ | |
+ | p _ {n} ( z) = z ^ {n} + c _ {1} z ^ {n-} 1 + \dots + c _ {n} $$ | ||
− | + | of degree $ n $, | |
+ | and let | ||
− | + | $$ | |
+ | M ( p _ {n} ) = \max \{ {| p _ {n} ( z) | } : {z \in E } \} | ||
+ | , | ||
+ | $$ | ||
− | + | $$ | |
+ | m _ {n} = \inf \{ {M ( p _ {n} ) } : {p _ {n} \in K _ {n} } \} ,\ \tau _ {n} = {m _ {n} } ^ {1/n} . | ||
+ | $$ | ||
− | exists | + | There exists a polynomial $ t _ {n} ( z) \in K _ {n} $ |
+ | for which $ M ( t _ {n} ) = m _ {n} $; | ||
+ | it is called the Chebyshev polynomial for $ E $. | ||
+ | Moreover, the limit | ||
− | + | $$ | |
+ | \lim\limits _ {n \rightarrow \infty } \tau _ {n} = \tau | ||
+ | $$ | ||
− | + | exists, and is called the Chebyshev constant for $ E $. | |
− | all | + | Restricting oneself to the class $ \widetilde{K} _ {n} $ |
+ | of all polynomials | ||
− | + | $$ | |
+ | \widetilde{p} _ {n} ( z) = z ^ {n} + \dots + \widetilde{c} _ {n} $$ | ||
− | + | all zeros of which lie in $ E $, | |
+ | one obtains corresponding values $ \widetilde{m} _ {n} , \widetilde \tau _ {n} , \widetilde \tau $ | ||
+ | and a polynomial $ \widetilde{t} _ {n} ( z) $ | ||
+ | for which $ M ( \widetilde{t} _ {n} ) = \widetilde{m} _ {n} $( | ||
+ | it is also called the Chebyshev polynomial). | ||
− | + | It is known that $ \tau = \widetilde \tau = C ( E) = d $, | |
+ | where $ C ( E) $ | ||
+ | is the [[Capacity|capacity]] of the compact set $ E $, | ||
+ | and $ d $ | ||
+ | is its [[Transfinite diameter|transfinite diameter]] (cf., for example, [[#References|[1]]]). | ||
− | + | The concept of the Chebyshev constant generalizes to compact sets $ E $ | |
+ | in higher-dimensional Euclidean spaces $ \mathbf R ^ {m} $ | ||
+ | starting from [[Potential theory|potential theory]]. For a point $ x \in \mathbf R ^ {m} $, | ||
+ | let | ||
− | + | $$ | |
+ | H ( | x | ) = \left \{ | ||
+ | \begin{array}{ll} | ||
+ | \mathop{\rm ln} | ||
+ | \frac{1}{| x | } | ||
+ | & \textrm{ for } m = 2 , \\ | ||
− | + | \frac{1}{| x | ^ {m-} 2 } | |
+ | & \textrm{ for } m \geq 3 , \\ | ||
+ | \end{array} | ||
− | + | \right .$$ | |
− | and for | + | be the fundamental solution of the Laplace equation, and for a set $ ( x _ {j} ) _ {j=} 1 ^ {n} \subset E $, |
+ | let | ||
− | + | $$ | |
+ | \sigma _ {n} ( E) = \sup \left \{ {\min \left \{ { | ||
+ | \frac{1}{n} | ||
+ | \sum _ { j= } 1 ^ { n } H ( | x - x _ {j} | ) } : {x \in E } \right \} } | ||
+ | : {( x _ {j} ) _ {j=} 1 ^ {n} \subset E } \right \} . | ||
+ | $$ | ||
+ | |||
+ | Then for $ m = 2 $ | ||
+ | one obtains the relation | ||
+ | |||
+ | $$ | ||
+ | \tau = \widetilde \tau = C ( E) = \mathop{\rm exp} \left ( - \lim\limits _ {n \rightarrow \infty } \ | ||
+ | \sigma _ {n} ( E) \right ) , | ||
+ | $$ | ||
+ | |||
+ | and for $ m \geq 3 $ | ||
+ | one obtains (cf. [[#References|[2]]]): | ||
+ | |||
+ | $$ | ||
+ | \tau = C ( E) = | ||
+ | \frac{1}{\lim\limits _ {n \rightarrow \infty } \sigma _ {n} ( E) } | ||
+ | . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L. Carleson, "Selected problems on exceptional sets" , v. Nostrand (1967)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L. Carleson, "Selected problems on exceptional sets" , v. Nostrand (1967)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Tsuji, "Potential theory in modern function theory" , Chelsea, reprint (1975)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.L. Walsh, "Interpolation and approximation by rational functions in the complex domain" , Amer. Math. Soc. (1956)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Tsuji, "Potential theory in modern function theory" , Chelsea, reprint (1975)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.L. Walsh, "Interpolation and approximation by rational functions in the complex domain" , Amer. Math. Soc. (1956)</TD></TR></table> |
Revision as of 16:43, 4 June 2020
A numerical invariant $ \tau = \tau ( E) $
of a compact set $ E $
in the complex plane that is used in the theory of best approximation.
Let $ K _ {n} $ be the class of all polynomials
$$ p _ {n} ( z) = z ^ {n} + c _ {1} z ^ {n-} 1 + \dots + c _ {n} $$
of degree $ n $, and let
$$ M ( p _ {n} ) = \max \{ {| p _ {n} ( z) | } : {z \in E } \} , $$
$$ m _ {n} = \inf \{ {M ( p _ {n} ) } : {p _ {n} \in K _ {n} } \} ,\ \tau _ {n} = {m _ {n} } ^ {1/n} . $$
There exists a polynomial $ t _ {n} ( z) \in K _ {n} $ for which $ M ( t _ {n} ) = m _ {n} $; it is called the Chebyshev polynomial for $ E $. Moreover, the limit
$$ \lim\limits _ {n \rightarrow \infty } \tau _ {n} = \tau $$
exists, and is called the Chebyshev constant for $ E $.
Restricting oneself to the class $ \widetilde{K} _ {n} $ of all polynomials
$$ \widetilde{p} _ {n} ( z) = z ^ {n} + \dots + \widetilde{c} _ {n} $$
all zeros of which lie in $ E $, one obtains corresponding values $ \widetilde{m} _ {n} , \widetilde \tau _ {n} , \widetilde \tau $ and a polynomial $ \widetilde{t} _ {n} ( z) $ for which $ M ( \widetilde{t} _ {n} ) = \widetilde{m} _ {n} $( it is also called the Chebyshev polynomial).
It is known that $ \tau = \widetilde \tau = C ( E) = d $, where $ C ( E) $ is the capacity of the compact set $ E $, and $ d $ is its transfinite diameter (cf., for example, [1]).
The concept of the Chebyshev constant generalizes to compact sets $ E $ in higher-dimensional Euclidean spaces $ \mathbf R ^ {m} $ starting from potential theory. For a point $ x \in \mathbf R ^ {m} $, let
$$ H ( | x | ) = \left \{ \begin{array}{ll} \mathop{\rm ln} \frac{1}{| x | } & \textrm{ for } m = 2 , \\ \frac{1}{| x | ^ {m-} 2 } & \textrm{ for } m \geq 3 , \\ \end{array} \right .$$
be the fundamental solution of the Laplace equation, and for a set $ ( x _ {j} ) _ {j=} 1 ^ {n} \subset E $, let
$$ \sigma _ {n} ( E) = \sup \left \{ {\min \left \{ { \frac{1}{n} \sum _ { j= } 1 ^ { n } H ( | x - x _ {j} | ) } : {x \in E } \right \} } : {( x _ {j} ) _ {j=} 1 ^ {n} \subset E } \right \} . $$
Then for $ m = 2 $ one obtains the relation
$$ \tau = \widetilde \tau = C ( E) = \mathop{\rm exp} \left ( - \lim\limits _ {n \rightarrow \infty } \ \sigma _ {n} ( E) \right ) , $$
and for $ m \geq 3 $ one obtains (cf. [2]):
$$ \tau = C ( E) = \frac{1}{\lim\limits _ {n \rightarrow \infty } \sigma _ {n} ( E) } . $$
References
[1] | G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian) |
[2] | L. Carleson, "Selected problems on exceptional sets" , v. Nostrand (1967) |
Comments
References
[a1] | M. Tsuji, "Potential theory in modern function theory" , Chelsea, reprint (1975) |
[a2] | J.L. Walsh, "Interpolation and approximation by rational functions in the complex domain" , Amer. Math. Soc. (1956) |
Chebyshev constant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Chebyshev_constant&oldid=17435