Difference between revisions of "Characteristic function of a set"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | c0216601.png | ||
+ | $#A+1 = 27 n = 0 | ||
+ | $#C+1 = 27 : ~/encyclopedia/old_files/data/C021/C.0201660 Characteristic function of a set | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | '' $ E $ | |
+ | in a space $ X $'' | ||
− | + | The function $ \chi = \chi _ {E} $ | |
+ | that is equal to 1 when $ x \in E $ | ||
+ | and equal to 0 when $ x \in CE $( | ||
+ | where $ CE $ | ||
+ | is the complement to $ E $ | ||
+ | in $ X $). | ||
+ | Every function $ \chi $ | ||
+ | on $ X $ | ||
+ | with values in $ \{ 0, 1 \} $ | ||
+ | is the characteristic function of some set, namely, the set $ E = \{ {x } : {\chi ( x) = 1 } \} $. | ||
+ | Properties of characteristic functions are: | ||
− | + | 1) $ \chi _ {CE} = 1 - \chi _ {E} $, | |
+ | $ \chi _ {E \setminus F } = \chi _ {E} ( 1 - \chi _ {F} ) $; | ||
− | + | 2) if $ F \subset E $, | |
+ | then $ \chi _ {E \setminus F } = \chi _ {E} - \chi _ {F} $; | ||
− | + | 3) if $ E = \cup _ \alpha E _ \alpha $, | |
+ | then $ \chi _ {E} = \sup _ \alpha \{ \chi _ {E _ \alpha } \} $; | ||
− | + | 4) if $ E = \cap _ \alpha E _ \alpha $, | |
+ | then $ \chi _ {E} = \inf _ \alpha \{ \chi _ {E _ \alpha } \} $; | ||
+ | |||
+ | 5) if $ E _ {1} , E _ {2} \dots $ | ||
+ | are pairwise disjoint, then $ \chi _ {\cup E _ {K} } = \sum _ {1} ^ \infty \chi _ {E _ {K} } $; | ||
+ | |||
+ | 6) if $ E = \cap _ {K} E _ {K} $, | ||
+ | then $ \chi _ {E} = \prod _ {1} ^ \infty \chi _ {E _ {K} } $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.R. Halmos, "Measure theory" , v. Nostrand (1950)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.R. Halmos, "Measure theory" , v. Nostrand (1950)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The characteristic function of a set is also called the indicator function of that set. The symbols | + | The characteristic function of a set is also called the indicator function of that set. The symbols $ 1 _ {E} $ |
+ | or $ \xi _ {E} $ | ||
+ | are often used instead of $ \chi _ {E} $. |
Revision as of 16:43, 4 June 2020
$ E $
in a space $ X $
The function $ \chi = \chi _ {E} $ that is equal to 1 when $ x \in E $ and equal to 0 when $ x \in CE $( where $ CE $ is the complement to $ E $ in $ X $). Every function $ \chi $ on $ X $ with values in $ \{ 0, 1 \} $ is the characteristic function of some set, namely, the set $ E = \{ {x } : {\chi ( x) = 1 } \} $. Properties of characteristic functions are:
1) $ \chi _ {CE} = 1 - \chi _ {E} $, $ \chi _ {E \setminus F } = \chi _ {E} ( 1 - \chi _ {F} ) $;
2) if $ F \subset E $, then $ \chi _ {E \setminus F } = \chi _ {E} - \chi _ {F} $;
3) if $ E = \cup _ \alpha E _ \alpha $, then $ \chi _ {E} = \sup _ \alpha \{ \chi _ {E _ \alpha } \} $;
4) if $ E = \cap _ \alpha E _ \alpha $, then $ \chi _ {E} = \inf _ \alpha \{ \chi _ {E _ \alpha } \} $;
5) if $ E _ {1} , E _ {2} \dots $ are pairwise disjoint, then $ \chi _ {\cup E _ {K} } = \sum _ {1} ^ \infty \chi _ {E _ {K} } $;
6) if $ E = \cap _ {K} E _ {K} $, then $ \chi _ {E} = \prod _ {1} ^ \infty \chi _ {E _ {K} } $.
References
[1] | P.R. Halmos, "Measure theory" , v. Nostrand (1950) |
Comments
The characteristic function of a set is also called the indicator function of that set. The symbols $ 1 _ {E} $ or $ \xi _ {E} $ are often used instead of $ \chi _ {E} $.
Characteristic function of a set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Characteristic_function_of_a_set&oldid=12927