Namespaces
Variants
Actions

Difference between revisions of "Brafman polynomials"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
b1108301.png
 +
$#A+1 = 10 n = 0
 +
$#C+1 = 10 : ~/encyclopedia/old_files/data/B110/B.1100830 Brafman polynomials
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
Polynomials given by
 
Polynomials given by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110830/b1108301.png" /></td> </tr></table>
+
$$
 +
B _ {n}  ^ {p} ( a _ {1} \dots a _ {r} ;b _ {1} \dots b _ {s} ;x ) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110830/b1108302.png" /></td> </tr></table>
+
$$
 +
=  
 +
{ {} _ {p + r }  F _ {s} } [ \Delta ( p; - n ) , a _ {1} \dots a _ {r} , b _ {1} \dots b _ {s} ;x ] ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110830/b1108303.png" /> is a positive integer, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110830/b1108304.png" /> abbreviates the set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110830/b1108305.png" /> parameters
+
where $  p $
 +
is a positive integer, $  \Delta ( p; - n ) $
 +
abbreviates the set of $  p $
 +
parameters
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110830/b1108306.png" /></td> </tr></table>
+
$$
 +
{
 +
\frac{- n }{p}
 +
} , - {
 +
\frac{( n - 1 ) }{p}
 +
} \dots - {
 +
\frac{( n - p + 1 ) }{p}
 +
} ,
 +
$$
  
and for non-negative integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110830/b1108307.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110830/b1108308.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110830/b1108309.png" /> denotes the generalized hypergeometric function (cf. also [[Hypergeometric function|Hypergeometric function]]), defined by
+
and for non-negative integers $  r $
 +
and $  s $,  
 +
$  { {} _ {r} F _ {s} } $
 +
denotes the generalized hypergeometric function (cf. also [[Hypergeometric function|Hypergeometric function]]), defined by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110830/b11083010.png" /></td> </tr></table>
+
$$
 +
{ {} _ {r} F _ {s} } ( a _ {1} \dots a _ {r} ;b _ {1} \dots b _ {s} ;x ) = \sum _ {k = 0 } ^  \infty  {
 +
\frac{( a _ {1} ) _ {k} \dots ( a _ {r} ) _ {k} x  ^ {k} }{( b _ {1} ) _ {k} \dots ( b _ {s} ) _ {k} k! }
 +
} .
 +
$$
  
 
The Brafman polynomials arise in the study of generating functions of [[Orthogonal polynomials|orthogonal polynomials]], [[#References|[a1]]].
 
The Brafman polynomials arise in the study of generating functions of [[Orthogonal polynomials|orthogonal polynomials]], [[#References|[a1]]].

Latest revision as of 06:29, 30 May 2020


Polynomials given by

$$ B _ {n} ^ {p} ( a _ {1} \dots a _ {r} ;b _ {1} \dots b _ {s} ;x ) = $$

$$ = { {} _ {p + r } F _ {s} } [ \Delta ( p; - n ) , a _ {1} \dots a _ {r} , b _ {1} \dots b _ {s} ;x ] , $$

where $ p $ is a positive integer, $ \Delta ( p; - n ) $ abbreviates the set of $ p $ parameters

$$ { \frac{- n }{p} } , - { \frac{( n - 1 ) }{p} } \dots - { \frac{( n - p + 1 ) }{p} } , $$

and for non-negative integers $ r $ and $ s $, $ { {} _ {r} F _ {s} } $ denotes the generalized hypergeometric function (cf. also Hypergeometric function), defined by

$$ { {} _ {r} F _ {s} } ( a _ {1} \dots a _ {r} ;b _ {1} \dots b _ {s} ;x ) = \sum _ {k = 0 } ^ \infty { \frac{( a _ {1} ) _ {k} \dots ( a _ {r} ) _ {k} x ^ {k} }{( b _ {1} ) _ {k} \dots ( b _ {s} ) _ {k} k! } } . $$

The Brafman polynomials arise in the study of generating functions of orthogonal polynomials, [a1].

There are extensions. H.W. Gould and A.T. Hopper [a2] have considered special cases which sometimes reduce to the Hermite polynomials; see [a4] for a generalization. It is known [a3] that, in general, the Brafman polynomials cannot form an orthogonal set with respect to any weight function.

References

[a1] F. Brafman, "Some generating functions for Laguerre and Hermite polynomials" Canadian J. Math. , 9 (1957) pp. 180–187
[a2] H.W. Gould, A.T. Hopper, "Operational formulas connected with two generalizations of Hermite polynomials" Duke Math. J. , 29 (1962) pp. 51–63
[a3] D. Mangeron, A.M. Krall, D.L. Fernandez, "Weight functions for some new classes of orthogonal polynomials" R. Acad. Cien. (Madrid) , 77 (1983) pp. 597–607
[a4] R.M. Shreshtha, "On generalized Brafman polynomials" Comp. R. Acad. Bulgar. Sci. , 32 (1979) pp. 1183–1185
How to Cite This Entry:
Brafman polynomials. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Brafman_polynomials&oldid=15276
This article was adapted from an original article by A.M. Krall (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article