Namespaces
Variants
Actions

Difference between revisions of "Best complete approximation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A best approximation of a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b0159201.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b0159202.png" /> variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b0159203.png" /> by algebraic or trigonometric polynomials. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b0159204.png" /> be the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b0159205.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b0159206.png" /> of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b0159207.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b0159208.png" />-periodic in each variable, that are either continuous or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b0159209.png" />-summable (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592010.png" />) on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592011.png" />-dimensional period cube with edges of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592012.png" />.
+
<!--
 +
b0159201.png
 +
$#A+1 = 38 n = 0
 +
$#C+1 = 38 : ~/encyclopedia/old_files/data/B015/B.0105920 Best complete approximation
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The best complete approximation of a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592013.png" /> by trigonometric polynomials is the quantity
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592014.png" /></td> </tr></table>
+
A best approximation of a function  $  f (x _ {1} \dots x _ {k} ) $
 +
in  $  k $
 +
variables  $  (k \geq  2) $
 +
by algebraic or trigonometric polynomials. Let  $  X $
 +
be the space  $  C $
 +
or  $  L _ {p} $
 +
of functions  $  f (x _ {1} \dots x _ {k} ) $,
 +
$  2 \pi $-
 +
periodic in each variable, that are either continuous or  $  p $-
 +
summable ( $  p \geq  1 $)
 +
on the  $  k $-
 +
dimensional period cube with edges of length  $  2 \pi $.
  
where the infimum is taken over all trigonometric polynomials of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592015.png" /> in the variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592016.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592017.png" />). Together with the best complete approximation, one also considers best partial approximations.
+
The best complete approximation of a function  $  f (x _ {1} \dots x _ {k} ) \in X $
 +
by trigonometric polynomials is the quantity
  
A best partial approximation of a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592018.png" /> is a best approximation by functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592019.png" /> that are trigonometric polynomials of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592020.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592021.png" />), respectively, in the fixed variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592022.png" /> with coefficients depending on the remaining <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592023.png" /> variables, i.e.
+
$$
 +
E _ {n _ {1}  \dots n _ {k} }
 +
(f) _ {X}  = \
 +
\inf _ {T _ {n _ {1}  \dots n _ {k} } } \
 +
\| f - T _ {n _ {1}  \dots n _ {k} } \| _ {X} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592024.png" /></td> </tr></table>
+
where the infimum is taken over all trigonometric polynomials of degree  $  n _ {i} $
 +
in the variable  $  x _ {i} $(
 +
$  1 \leq  i \leq  k $).
 +
Together with the best complete approximation, one also considers best partial approximations.
 +
 
 +
A best partial approximation of a function  $  f (x _ {1} \dots x _ {k} ) \in X $
 +
is a best approximation by functions  $  T _ {n _ {\nu _ {1}  } \dots n _ {\nu _ {r}  } } (x _ {1} \dots x _ {k} ) \in K $
 +
that are trigonometric polynomials of degree  $  n _ {\nu _ {1}  } \dots n _ {\nu _ {r}  } $(
 +
$  1 \leq  r < k $),
 +
respectively, in the fixed variables  $  x _ {\nu _ {1}  } \dots x _ {\nu _ {r}  } $
 +
with coefficients depending on the remaining  $  k - r $
 +
variables, i.e.
 +
 
 +
$$
 +
E _ {n _ {\nu _ {1}  } \dots n _ {\nu _ {r}  } , \infty } (f) _ {X}  = \
 +
\inf _
 +
{T _ {n _ {\nu _ {1}  } \dots n _ {\nu _ {r}  } } } \
 +
\| f - T _ {n _ {\nu _ {1}  } \dots n _ {\nu _ {r}  } } \| _ {X} .
 +
$$
  
 
It is obvious that
 
It is obvious that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592025.png" /></td> </tr></table>
+
$$
 +
E _ {n _ {1}  \dots n _ {r} \dots n _ {k} } (f) _ {X}  \geq  \
 +
E _ {n _ {1}  \dots n _ {r} , \infty } (f) _ {X} .
 +
$$
  
 
S.N. Bernstein [S.N. Bernshtein] [[#References|[1]]] proved the following inequality for continuous functions in two variables:
 
S.N. Bernstein [S.N. Bernshtein] [[#References|[1]]] proved the following inequality for continuous functions in two variables:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592026.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
E _ {n _ {1}  , n _ {2} } (f) _ {C}  \leq  \
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592027.png" /></td> </tr></table>
+
$$
 +
\leq  A  \mathop{\rm ln} (2 +  \mathop{\rm min} \{ n _ {1} , n _ {2} \} ) (E _ {n _ {1}  , \infty } (f) _ {C} + E _ {n _ {2}  , \infty } (f) _ {C} ),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592028.png" /> is an absolute constant. It has been shown [[#References|[3]]] that the term <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592029.png" /> in inequality (1) (and in the analogous relation for the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592030.png" />) cannot be replaced by a factor with a slower rate of increase as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592031.png" />.
+
where $  A $
 +
is an absolute constant. It has been shown [[#References|[3]]] that the term $  \mathop{\rm ln} (2 +  \mathop{\rm min} \{ n _ {1} , n _ {2} \} ) $
 +
in inequality (1) (and in the analogous relation for the space $  L _ {1} $)  
 +
cannot be replaced by a factor with a slower rate of increase as $  \mathop{\rm min} \{ n _ {1} , n _ {2} \} \rightarrow \infty $.
  
In the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592032.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592033.png" />) one has the inequality
+
In the space $  L _ {p} $(
 +
$  p > 1 $)  
 +
one has the inequality
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592034.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
E _ {n _ {1}  \dots n _ {k} } (f) _ {L _ {p}  }  \leq  \
 +
A _ {p, k }
 +
\sum _ {i = 1 } ^ { k }  E _ {n _ {i}  , \infty } (f) _ {L _ {p}  } ,
 +
$$
  
where the constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592035.png" /> depends only on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592037.png" />.
+
where the constant $  A _ {p, k }  $
 +
depends only on $  p $
 +
and $  k $.
  
Similar definitions yield best complete approximations and best partial approximations of functions defined on a closed bounded domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592038.png" /> by algebraic polynomials, and in this case inequalities similar to (1) and (2) have been established.
+
Similar definitions yield best complete approximations and best partial approximations of functions defined on a closed bounded domain $  \Omega \subset  \mathbf R  ^ {k} $
 +
by algebraic polynomials, and in this case inequalities similar to (1) and (2) have been established.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S.N. Bernshtein,  "Collected works" , '''2''' , Moscow  (1954)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.F. Timan,  "Theory of approximation of functions of a real variable" , Pergamon  (1963)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.N. Temlyakov,  "On best approximations of functions in two variables"  ''Dokl. Akad. Nauk SSSR'' , '''223''' :  5  (1975)  pp. 1079–1082  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S.N. Bernshtein,  "Collected works" , '''2''' , Moscow  (1954)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.F. Timan,  "Theory of approximation of functions of a real variable" , Pergamon  (1963)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.N. Temlyakov,  "On best approximations of functions in two variables"  ''Dokl. Akad. Nauk SSSR'' , '''223''' :  5  (1975)  pp. 1079–1082  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G.G. Lorentz,  "Approximation of functions" , Holt, Rinehart &amp; Winston  (1966)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G.G. Lorentz,  "Approximation of functions" , Holt, Rinehart &amp; Winston  (1966)</TD></TR></table>

Latest revision as of 10:58, 29 May 2020


A best approximation of a function $ f (x _ {1} \dots x _ {k} ) $ in $ k $ variables $ (k \geq 2) $ by algebraic or trigonometric polynomials. Let $ X $ be the space $ C $ or $ L _ {p} $ of functions $ f (x _ {1} \dots x _ {k} ) $, $ 2 \pi $- periodic in each variable, that are either continuous or $ p $- summable ( $ p \geq 1 $) on the $ k $- dimensional period cube with edges of length $ 2 \pi $.

The best complete approximation of a function $ f (x _ {1} \dots x _ {k} ) \in X $ by trigonometric polynomials is the quantity

$$ E _ {n _ {1} \dots n _ {k} } (f) _ {X} = \ \inf _ {T _ {n _ {1} \dots n _ {k} } } \ \| f - T _ {n _ {1} \dots n _ {k} } \| _ {X} , $$

where the infimum is taken over all trigonometric polynomials of degree $ n _ {i} $ in the variable $ x _ {i} $( $ 1 \leq i \leq k $). Together with the best complete approximation, one also considers best partial approximations.

A best partial approximation of a function $ f (x _ {1} \dots x _ {k} ) \in X $ is a best approximation by functions $ T _ {n _ {\nu _ {1} } \dots n _ {\nu _ {r} } } (x _ {1} \dots x _ {k} ) \in K $ that are trigonometric polynomials of degree $ n _ {\nu _ {1} } \dots n _ {\nu _ {r} } $( $ 1 \leq r < k $), respectively, in the fixed variables $ x _ {\nu _ {1} } \dots x _ {\nu _ {r} } $ with coefficients depending on the remaining $ k - r $ variables, i.e.

$$ E _ {n _ {\nu _ {1} } \dots n _ {\nu _ {r} } , \infty } (f) _ {X} = \ \inf _ {T _ {n _ {\nu _ {1} } \dots n _ {\nu _ {r} } } } \ \| f - T _ {n _ {\nu _ {1} } \dots n _ {\nu _ {r} } } \| _ {X} . $$

It is obvious that

$$ E _ {n _ {1} \dots n _ {r} \dots n _ {k} } (f) _ {X} \geq \ E _ {n _ {1} \dots n _ {r} , \infty } (f) _ {X} . $$

S.N. Bernstein [S.N. Bernshtein] [1] proved the following inequality for continuous functions in two variables:

$$ \tag{1 } E _ {n _ {1} , n _ {2} } (f) _ {C} \leq \ $$

$$ \leq A \mathop{\rm ln} (2 + \mathop{\rm min} \{ n _ {1} , n _ {2} \} ) (E _ {n _ {1} , \infty } (f) _ {C} + E _ {n _ {2} , \infty } (f) _ {C} ), $$

where $ A $ is an absolute constant. It has been shown [3] that the term $ \mathop{\rm ln} (2 + \mathop{\rm min} \{ n _ {1} , n _ {2} \} ) $ in inequality (1) (and in the analogous relation for the space $ L _ {1} $) cannot be replaced by a factor with a slower rate of increase as $ \mathop{\rm min} \{ n _ {1} , n _ {2} \} \rightarrow \infty $.

In the space $ L _ {p} $( $ p > 1 $) one has the inequality

$$ \tag{2 } E _ {n _ {1} \dots n _ {k} } (f) _ {L _ {p} } \leq \ A _ {p, k } \sum _ {i = 1 } ^ { k } E _ {n _ {i} , \infty } (f) _ {L _ {p} } , $$

where the constant $ A _ {p, k } $ depends only on $ p $ and $ k $.

Similar definitions yield best complete approximations and best partial approximations of functions defined on a closed bounded domain $ \Omega \subset \mathbf R ^ {k} $ by algebraic polynomials, and in this case inequalities similar to (1) and (2) have been established.

References

[1] S.N. Bernshtein, "Collected works" , 2 , Moscow (1954) (In Russian)
[2] A.F. Timan, "Theory of approximation of functions of a real variable" , Pergamon (1963) (Translated from Russian)
[3] V.N. Temlyakov, "On best approximations of functions in two variables" Dokl. Akad. Nauk SSSR , 223 : 5 (1975) pp. 1079–1082 (In Russian)

Comments

References

[a1] G.G. Lorentz, "Approximation of functions" , Holt, Rinehart & Winston (1966)
How to Cite This Entry:
Best complete approximation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Best_complete_approximation&oldid=17763
This article was adapted from an original article by N.P. KorneichukV.P. Motornyi (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article