Difference between revisions of "Best approximation"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | b0158901.png | ||
+ | $#A+1 = 101 n = 1 | ||
+ | $#C+1 = 101 : ~/encyclopedia/old_files/data/B015/B.0105890 Best approximation | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
+ | ''of a function $ x (t) $ | ||
+ | by functions $ u (t) $ | ||
+ | from a fixed set $ F $'' | ||
The quantity | The quantity | ||
− | + | $$ | |
+ | E (x, F) = \inf _ {u \in F } \mu (x, u), | ||
+ | $$ | ||
− | where | + | where $ \mu (x, u) $ |
+ | is the error of approximation (see [[Approximation of functions, measure of|Approximation of functions, measure of]]). The concept of a best approximation is meaningful in an arbitrary metric space $ X $ | ||
+ | when $ \mu (x, u) $ | ||
+ | is defined by the distance between $ x $ | ||
+ | and $ u $; | ||
+ | in this case $ E (x, F) $ | ||
+ | is the distance from $ x $ | ||
+ | to the set $ F $. | ||
+ | If $ X $ | ||
+ | is a normed linear space, then for a fixed $ F \subset X $ | ||
+ | the best approximation | ||
− | + | $$ \tag{1 } | |
+ | E (x, F) = \ | ||
+ | \inf _ {u \in F } \| x - u \| | ||
+ | $$ | ||
− | may be regarded as a functional defined on | + | may be regarded as a functional defined on $ X $( |
+ | the functional of best approximation). | ||
− | The functional of best approximation is continuous, whatever the set | + | The functional of best approximation is continuous, whatever the set $ F $. |
+ | If $ F $ | ||
+ | is a subspace, the functional of best approximation is a semi-norm, i.e. | ||
− | + | $$ | |
+ | E (x _ {1} + x _ {2} , F) \leq E (x _ {1} , F) + E (x _ {2} , F) | ||
+ | $$ | ||
and | and | ||
− | + | $$ | |
+ | E ( \lambda x, F) = | \lambda | E (x, F) | ||
+ | $$ | ||
− | for any | + | for any $ \lambda \in \mathbf R $. |
+ | If $ F $ | ||
+ | is a finite-dimensional subspace, then for any $ x \in X $ | ||
+ | there exists an element $ u _ {0} \in F $( | ||
+ | an element of best approximation) at which the infimum in (1) is attained: | ||
− | + | $$ | |
+ | E (x, F) = \| x - u _ {0} \| . | ||
+ | $$ | ||
− | In a space | + | In a space $ X $ |
+ | with a strictly convex norm, the element of best approximation is unique. | ||
− | Through the use of duality theorems, the best approximation in a normed linear space | + | Through the use of duality theorems, the best approximation in a normed linear space $ X $ |
+ | can be expressed in terms of the supremum of the values of certain functionals from the adjoint space $ X ^ {*} $( | ||
+ | see, e.g. [[#References|[5]]], [[#References|[8]]]). If $ F $ | ||
+ | is a closed convex subset of $ X $, | ||
+ | then for any $ x \in X $ | ||
− | + | $$ \tag{2 } | |
+ | E (x, F) = \ | ||
+ | \sup _ {\begin{array}{c} | ||
+ | f \in X ^ {*} \\ | ||
+ | \| f \| \leq 1 | ||
+ | \end{array} | ||
+ | } \ | ||
+ | \left [ f (x) - \sup _ {u \in F } f (u) \right ] ; | ||
+ | $$ | ||
− | in particular, if | + | in particular, if $ F $ |
+ | is a subspace, then | ||
− | + | $$ \tag{3 } | |
+ | E (x, F) = \ | ||
+ | \sup _ {\begin{array}{c} | ||
+ | f \in F ^ \perp \\ | ||
+ | \| f \| \leq 1 | ||
+ | \end{array} | ||
+ | } \ | ||
+ | f (x), | ||
+ | $$ | ||
− | where | + | where $ F ^ \perp $ |
+ | is the set of functionals $ f $ | ||
+ | in $ X ^ {*} $ | ||
+ | such that $ f (u) = 0 $ | ||
+ | for any $ u \in F $. | ||
+ | In the function spaces $ C $ | ||
+ | or $ L _ {p} $, | ||
+ | the right-hand sides of (2) and (3) take explicit forms depending on the form of the linear functional. In a Hilbert space $ H $, | ||
+ | the best approximation of an element $ x \in H $ | ||
+ | by an $ n $- | ||
+ | dimensional subspace $ F _ {n} $ | ||
+ | is obtained by orthogonal projection on $ F _ {n} $ | ||
+ | and can be calculated; one has: | ||
− | + | $$ | |
+ | E (x, F _ {n} ) = \ | ||
+ | \sqrt { | ||
+ | \frac{G (x, u _ {1} \dots u _ {n} ) }{G (u _ {1} \dots u _ {n} ) } | ||
+ | } , | ||
+ | $$ | ||
− | where | + | where $ u _ {1} \dots u _ {n} $ |
+ | form a basis of $ F _ {n} $ | ||
+ | and $ G (u _ {1} \dots u _ {n} ) $ | ||
+ | is the Gram determinant, the elements of which are the scalar products $ (u _ {i} , u _ {j} ) $, | ||
+ | $ i, j = 1 \dots n $. | ||
+ | If $ \{ u _ {k} \} $ | ||
+ | is an orthonormal basis, then | ||
− | + | $$ | |
+ | E ^ {2} (x, F _ {n} ) = \ | ||
+ | \| x \| ^ {2} - \sum _ {k = 1 } ^ { n } (x, u _ {k} ) ^ {2} . | ||
+ | $$ | ||
− | In the space | + | In the space $ C = C [a, b] $ |
+ | one has the following estimate for the best uniform approximation of a function $ x (t) \in C $ | ||
+ | by an $ n $- | ||
+ | dimensional Chebyshev subspace $ F _ {n} \subset C $( | ||
+ | the de la Vallée-Poussin theorem): If for some function $ u (t) \in F _ {n} $ | ||
+ | there exist $ n + 1 $ | ||
+ | points $ t _ {k} $, | ||
+ | $ a \leq t _ {1} < {} \dots < t _ {n + 1 } \leq b $, | ||
+ | for which the difference | ||
− | + | $$ | |
+ | \Delta (t) = x (t) - u (t) | ||
+ | $$ | ||
takes values with alternating signs, then | takes values with alternating signs, then | ||
− | + | $$ | |
+ | E (x, F _ {n} ) \geq \ | ||
+ | \mathop{\rm min} _ {1 \leq k \leq n + 1 } | \Delta (t _ {k} ) | . | ||
+ | $$ | ||
− | For best approximations in | + | For best approximations in $ L _ {1} (a, b) $ |
+ | see [[Markov criterion|Markov criterion]]. In several important cases, the best approximations of functions by finite-dimensional subspaces can be bounded from above in terms of differential-difference characteristics (e.g. the modulus of continuity) of the approximated function or its derivatives. | ||
− | The concept of a best uniform approximation of continuous functions by polynomials is due to P.L. Chebyshev (1854), who developed the theoretical foundations of the concept and established a criterion for polynomials of best approximation in the metric space | + | The concept of a best uniform approximation of continuous functions by polynomials is due to P.L. Chebyshev (1854), who developed the theoretical foundations of the concept and established a criterion for polynomials of best approximation in the metric space $ C $( |
+ | see [[Polynomial of best approximation|Polynomial of best approximation]]). | ||
− | The best approximation of a class of functions is the supremum of the best approximations of the functions | + | The best approximation of a class of functions is the supremum of the best approximations of the functions $ f $ |
+ | in the given class $ \mathfrak M $ | ||
+ | by a fixed set of functions $ F $, | ||
+ | i.e. the quantity | ||
− | + | $$ | |
+ | E ( \mathfrak M , F) = \ | ||
+ | \sup _ {f \in \mathfrak M } E (f, F) = \ | ||
+ | \sup _ {f \in \mathfrak M } \inf _ {\phi \in F } \ | ||
+ | \mu (f, \phi ). | ||
+ | $$ | ||
− | The number | + | The number $ E ( \mathfrak M , F) $ |
+ | characterizes the maximum deviation (in the specific metric chosen) of the class $ \mathfrak M $ | ||
+ | from the approximating set $ F $ | ||
+ | and indicates the minimal possible error to be expected when approximating an arbitrary function $ f \in \mathfrak M $ | ||
+ | by functions of $ F $. | ||
− | Let | + | Let $ \mathfrak M $ |
+ | be a subset of a normed linear function space $ X $, | ||
+ | let $ U = \{ u _ {1} (t), u _ {2} (t) ,\dots \} $ | ||
+ | be a linearly independent system of functions in $ X $ | ||
+ | and let $ F _ {n} $, | ||
+ | $ n = 1, 2 \dots $ | ||
+ | be the subspaces generated by the first $ n $ | ||
+ | elements of this system. By investigating the sequence $ E ( \mathfrak M , F _ {n} ) $, | ||
+ | $ n = 1, 2 \dots $ | ||
+ | one can draw conclusions regarding both the structural and smoothness properties of the functions in $ \mathfrak M $ | ||
+ | and the approximation properties of the system $ U $ | ||
+ | relative to $ \mathfrak M $. | ||
+ | If $ X $ | ||
+ | is a Banach function space and $ U $ | ||
+ | is closed in $ X $, | ||
+ | i.e. $ \overline{ {\cup F _ {n} }}\; = X $, | ||
+ | then $ E ( \mathfrak M , F _ {n} ) \rightarrow 0 $ | ||
+ | as $ n \rightarrow \infty $ | ||
+ | if and only if $ \mathfrak M $ | ||
+ | is a compact subset of $ X $. | ||
− | In various important cases, e.g. when the | + | In various important cases, e.g. when the $ F _ {n} $ |
+ | are subspaces of trigonometric polynomials or periodic splines, and the class $ \mathfrak M $ | ||
+ | is defined by conditions imposed on the norm or on the modulus of continuity of some derivative $ f ^ {(r)} $, | ||
+ | the numbers $ E ( \mathfrak M , F _ {n} ) $ | ||
+ | can be calculated explicitly [[#References|[5]]]. In the non-periodic case, results are available concerning the asymptotic behaviour of $ E ( \mathfrak M , F _ {n} ) $ | ||
+ | as $ n \rightarrow \infty $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.L. Chebyshev, "Complete collected works" , '''2''' , Moscow (1947) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.I. [N.I. Akhiezer] Achiezer, "Theory of approximation" , F. Ungar (1956) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.K. Dzyadyk, "Introduction to the theory of uniform approximation of functions by polynomials" , Moscow (1977) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.L. Goncharov, "The theory of interpolation and approximation of functions" , Moscow (1954) (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> N.P. Korneichuk, "Extremal problems in approximation theory" , Moscow (1976) (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> S.M. Nikol'skii, "Approximation of functions of several variables and imbedding theorems" , Springer (1975) (Translated from Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> A.F. Timan, "Theory of approximation of functions of a real variable" , Pergamon (1963) (Translated from Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> V.M. Tikhomirov, "Some problems in approximation theory" , Moscow (1976) (In Russian)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> P.J. Laurent, "Approximation et optimisation" , Hermann (1972)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.L. Chebyshev, "Complete collected works" , '''2''' , Moscow (1947) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.I. [N.I. Akhiezer] Achiezer, "Theory of approximation" , F. Ungar (1956) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.K. Dzyadyk, "Introduction to the theory of uniform approximation of functions by polynomials" , Moscow (1977) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.L. Goncharov, "The theory of interpolation and approximation of functions" , Moscow (1954) (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> N.P. Korneichuk, "Extremal problems in approximation theory" , Moscow (1976) (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> S.M. Nikol'skii, "Approximation of functions of several variables and imbedding theorems" , Springer (1975) (Translated from Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> A.F. Timan, "Theory of approximation of functions of a real variable" , Pergamon (1963) (Translated from Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> V.M. Tikhomirov, "Some problems in approximation theory" , Moscow (1976) (In Russian)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> P.J. Laurent, "Approximation et optimisation" , Hermann (1972)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Revision as of 10:58, 29 May 2020
of a function $ x (t) $
by functions $ u (t) $
from a fixed set $ F $
The quantity
$$ E (x, F) = \inf _ {u \in F } \mu (x, u), $$
where $ \mu (x, u) $ is the error of approximation (see Approximation of functions, measure of). The concept of a best approximation is meaningful in an arbitrary metric space $ X $ when $ \mu (x, u) $ is defined by the distance between $ x $ and $ u $; in this case $ E (x, F) $ is the distance from $ x $ to the set $ F $. If $ X $ is a normed linear space, then for a fixed $ F \subset X $ the best approximation
$$ \tag{1 } E (x, F) = \ \inf _ {u \in F } \| x - u \| $$
may be regarded as a functional defined on $ X $( the functional of best approximation).
The functional of best approximation is continuous, whatever the set $ F $. If $ F $ is a subspace, the functional of best approximation is a semi-norm, i.e.
$$ E (x _ {1} + x _ {2} , F) \leq E (x _ {1} , F) + E (x _ {2} , F) $$
and
$$ E ( \lambda x, F) = | \lambda | E (x, F) $$
for any $ \lambda \in \mathbf R $. If $ F $ is a finite-dimensional subspace, then for any $ x \in X $ there exists an element $ u _ {0} \in F $( an element of best approximation) at which the infimum in (1) is attained:
$$ E (x, F) = \| x - u _ {0} \| . $$
In a space $ X $ with a strictly convex norm, the element of best approximation is unique.
Through the use of duality theorems, the best approximation in a normed linear space $ X $ can be expressed in terms of the supremum of the values of certain functionals from the adjoint space $ X ^ {*} $( see, e.g. [5], [8]). If $ F $ is a closed convex subset of $ X $, then for any $ x \in X $
$$ \tag{2 } E (x, F) = \ \sup _ {\begin{array}{c} f \in X ^ {*} \\ \| f \| \leq 1 \end{array} } \ \left [ f (x) - \sup _ {u \in F } f (u) \right ] ; $$
in particular, if $ F $ is a subspace, then
$$ \tag{3 } E (x, F) = \ \sup _ {\begin{array}{c} f \in F ^ \perp \\ \| f \| \leq 1 \end{array} } \ f (x), $$
where $ F ^ \perp $ is the set of functionals $ f $ in $ X ^ {*} $ such that $ f (u) = 0 $ for any $ u \in F $. In the function spaces $ C $ or $ L _ {p} $, the right-hand sides of (2) and (3) take explicit forms depending on the form of the linear functional. In a Hilbert space $ H $, the best approximation of an element $ x \in H $ by an $ n $- dimensional subspace $ F _ {n} $ is obtained by orthogonal projection on $ F _ {n} $ and can be calculated; one has:
$$ E (x, F _ {n} ) = \ \sqrt { \frac{G (x, u _ {1} \dots u _ {n} ) }{G (u _ {1} \dots u _ {n} ) } } , $$
where $ u _ {1} \dots u _ {n} $ form a basis of $ F _ {n} $ and $ G (u _ {1} \dots u _ {n} ) $ is the Gram determinant, the elements of which are the scalar products $ (u _ {i} , u _ {j} ) $, $ i, j = 1 \dots n $. If $ \{ u _ {k} \} $ is an orthonormal basis, then
$$ E ^ {2} (x, F _ {n} ) = \ \| x \| ^ {2} - \sum _ {k = 1 } ^ { n } (x, u _ {k} ) ^ {2} . $$
In the space $ C = C [a, b] $ one has the following estimate for the best uniform approximation of a function $ x (t) \in C $ by an $ n $- dimensional Chebyshev subspace $ F _ {n} \subset C $( the de la Vallée-Poussin theorem): If for some function $ u (t) \in F _ {n} $ there exist $ n + 1 $ points $ t _ {k} $, $ a \leq t _ {1} < {} \dots < t _ {n + 1 } \leq b $, for which the difference
$$ \Delta (t) = x (t) - u (t) $$
takes values with alternating signs, then
$$ E (x, F _ {n} ) \geq \ \mathop{\rm min} _ {1 \leq k \leq n + 1 } | \Delta (t _ {k} ) | . $$
For best approximations in $ L _ {1} (a, b) $ see Markov criterion. In several important cases, the best approximations of functions by finite-dimensional subspaces can be bounded from above in terms of differential-difference characteristics (e.g. the modulus of continuity) of the approximated function or its derivatives.
The concept of a best uniform approximation of continuous functions by polynomials is due to P.L. Chebyshev (1854), who developed the theoretical foundations of the concept and established a criterion for polynomials of best approximation in the metric space $ C $( see Polynomial of best approximation).
The best approximation of a class of functions is the supremum of the best approximations of the functions $ f $ in the given class $ \mathfrak M $ by a fixed set of functions $ F $, i.e. the quantity
$$ E ( \mathfrak M , F) = \ \sup _ {f \in \mathfrak M } E (f, F) = \ \sup _ {f \in \mathfrak M } \inf _ {\phi \in F } \ \mu (f, \phi ). $$
The number $ E ( \mathfrak M , F) $ characterizes the maximum deviation (in the specific metric chosen) of the class $ \mathfrak M $ from the approximating set $ F $ and indicates the minimal possible error to be expected when approximating an arbitrary function $ f \in \mathfrak M $ by functions of $ F $.
Let $ \mathfrak M $ be a subset of a normed linear function space $ X $, let $ U = \{ u _ {1} (t), u _ {2} (t) ,\dots \} $ be a linearly independent system of functions in $ X $ and let $ F _ {n} $, $ n = 1, 2 \dots $ be the subspaces generated by the first $ n $ elements of this system. By investigating the sequence $ E ( \mathfrak M , F _ {n} ) $, $ n = 1, 2 \dots $ one can draw conclusions regarding both the structural and smoothness properties of the functions in $ \mathfrak M $ and the approximation properties of the system $ U $ relative to $ \mathfrak M $. If $ X $ is a Banach function space and $ U $ is closed in $ X $, i.e. $ \overline{ {\cup F _ {n} }}\; = X $, then $ E ( \mathfrak M , F _ {n} ) \rightarrow 0 $ as $ n \rightarrow \infty $ if and only if $ \mathfrak M $ is a compact subset of $ X $.
In various important cases, e.g. when the $ F _ {n} $ are subspaces of trigonometric polynomials or periodic splines, and the class $ \mathfrak M $ is defined by conditions imposed on the norm or on the modulus of continuity of some derivative $ f ^ {(r)} $, the numbers $ E ( \mathfrak M , F _ {n} ) $ can be calculated explicitly [5]. In the non-periodic case, results are available concerning the asymptotic behaviour of $ E ( \mathfrak M , F _ {n} ) $ as $ n \rightarrow \infty $.
References
[1] | P.L. Chebyshev, "Complete collected works" , 2 , Moscow (1947) (In Russian) |
[2] | N.I. [N.I. Akhiezer] Achiezer, "Theory of approximation" , F. Ungar (1956) (Translated from Russian) |
[3] | V.K. Dzyadyk, "Introduction to the theory of uniform approximation of functions by polynomials" , Moscow (1977) (In Russian) |
[4] | V.L. Goncharov, "The theory of interpolation and approximation of functions" , Moscow (1954) (In Russian) |
[5] | N.P. Korneichuk, "Extremal problems in approximation theory" , Moscow (1976) (In Russian) |
[6] | S.M. Nikol'skii, "Approximation of functions of several variables and imbedding theorems" , Springer (1975) (Translated from Russian) |
[7] | A.F. Timan, "Theory of approximation of functions of a real variable" , Pergamon (1963) (Translated from Russian) |
[8] | V.M. Tikhomirov, "Some problems in approximation theory" , Moscow (1976) (In Russian) |
[9] | P.J. Laurent, "Approximation et optimisation" , Hermann (1972) |
Comments
In Western literature an element, a functional or a polynomial of best approximation is also called a best approximation.
References
[a1] | G.G. Lorentz, "Approximation of functions" , Holt, Rinehart & Winston (1966) |
[a2] | E.W. Cheney, "Introduction to approximation theory" , Chelsea, reprint (1982) pp. 203ff |
[a3] | J.R. Rice, "The approximation of functions" , 1. Linear theory , Addison-Wesley (1964) |
[a4] | A. Pinkus, "-widths in approximation theory" , Springer (1985) (Translated from Russian) |
Best approximation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Best_approximation&oldid=16361