Difference between revisions of "Bessel potential"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | b0158701.png | ||
+ | $#A+1 = 30 n = 0 | ||
+ | $#C+1 = 30 : ~/encyclopedia/old_files/data/B015/B.0105870 Bessel potential | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A potential of the form | A potential of the form | ||
− | + | $$ | |
+ | P _ \alpha (x) = \ | ||
+ | \int\limits _ {\mathbf R ^ {n} } | ||
+ | G _ \alpha (x - y) \ | ||
+ | d \mu (y),\ \ | ||
+ | a > 0, | ||
+ | $$ | ||
− | where | + | where $ x = (x _ {1} \dots x _ {n} ) $, |
+ | $ y = (y _ {1} \dots y _ {n} ) $ | ||
+ | are points in the Euclidean space $ \mathbf R ^ {n} $, | ||
+ | $ n \geq 2 $; | ||
+ | $ d \mu $ | ||
+ | is a Borel measure on $ \mathbf R ^ {n} $; | ||
− | + | $$ | |
+ | G _ \alpha (x) = \ | ||
+ | 2 ^ {(2 - n - \alpha ) / 2 } | ||
+ | \pi ^ {-n / 2 } | ||
+ | \left [ \Gamma \left ( | ||
+ | { | ||
+ | \frac \alpha {2} | ||
+ | } \right ) \right ] ^ {-1} | ||
+ | K _ {(n - \alpha ) / 2 } | ||
+ | (| x |) | x | ^ {( \alpha - n) / 2 } , | ||
+ | $$ | ||
− | + | $$ | |
+ | | x | = \left ( \sum _ {i = 1 } ^ { n } | x _ {i} ^ {2} | \right ) ^ {1/2} , | ||
+ | $$ | ||
− | and | + | and $ K _ \nu (z) $ |
+ | is the modified cylinder function (or Bessel function, cf. [[Cylinder functions|Cylinder functions]]) of the second kind of order $ \nu $ | ||
+ | or the Macdonald function of order $ \nu $; | ||
+ | $ G _ \alpha (x) $ | ||
+ | is called a Bessel kernel. | ||
− | The principal properties of the Bessel kernels | + | The principal properties of the Bessel kernels $ G _ \alpha (x) $ |
+ | are the same as those of the Riesz kernels (cf. [[Riesz potential|Riesz potential]]), viz., they are positive, continuous for $ x \neq 0 $, | ||
+ | can be composed | ||
− | + | $$ | |
+ | \int\limits _ {\mathbf R ^ {n} } | ||
+ | G _ \alpha (x - y) | ||
+ | G _ \beta (y) dy = \ | ||
+ | G _ {\alpha + \beta } (x), | ||
+ | $$ | ||
− | but, unlike the Riesz potentials, Bessel potentials are applicable for all | + | but, unlike the Riesz potentials, Bessel potentials are applicable for all $ \alpha > 0 $, |
+ | since | ||
− | + | $$ | |
+ | G _ \alpha (x) \sim \ | ||
+ | 2 ^ {(1 - n - \alpha ) / 2 } | ||
+ | \pi ^ {(1 - n) / 2 } | ||
+ | \left [ \Gamma \left ( | ||
+ | { | ||
+ | \frac \alpha {2} | ||
+ | } \right ) \right ] ^ {-1} | ||
+ | | x | ^ {( \alpha - n - 1) / 2 } | ||
+ | e ^ {- | x | } , | ||
+ | $$ | ||
− | as | + | as $ | x | \rightarrow \infty $. |
− | If | + | If $ \alpha > 2m $, |
+ | where $ m $ | ||
+ | is a natural number, and the measure $ d \mu $ | ||
+ | is absolutely continuous with square-integrable density $ f(y) \in L _ {2} ( \mathbf R ^ {2m} ) $, | ||
+ | the Bessel potentials satisfy the identities: | ||
− | + | $$ | |
+ | (1 - \Delta ) ^ {m} | ||
+ | P _ \alpha (x) = \ | ||
+ | P _ {\alpha - 2m } (x), | ||
+ | $$ | ||
and | and | ||
− | + | $$ | |
+ | (1 - \Delta ) ^ {m} | ||
+ | P _ {2m} (x) = \ | ||
+ | f (x), | ||
+ | $$ | ||
− | where | + | where $ \Delta $ |
+ | is the [[Laplace operator|Laplace operator]] on $ \mathbf R ^ {2m} $. | ||
+ | In other words, the function $ G _ {2m} (x) $ | ||
+ | is a fundamental solution of the operator $ (1 - \Delta ) ^ {m} $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.M. Nikol'skii, "Approximation of functions of several variables and imbedding theorems" , Springer (1975) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Aronszajn, K.T. Smith, "Theory of Bessel potentials I" ''Ann. Inst. Fourier (Grenoble)'' , '''11''' (1961) pp. 385–475</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.M. Nikol'skii, "Approximation of functions of several variables and imbedding theorems" , Springer (1975) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Aronszajn, K.T. Smith, "Theory of Bessel potentials I" ''Ann. Inst. Fourier (Grenoble)'' , '''11''' (1961) pp. 385–475</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The function | + | The function $ K _ \nu (z) $ |
+ | is usually called the modified Bessel function of the third kind. |
Latest revision as of 10:58, 29 May 2020
A potential of the form
$$ P _ \alpha (x) = \ \int\limits _ {\mathbf R ^ {n} } G _ \alpha (x - y) \ d \mu (y),\ \ a > 0, $$
where $ x = (x _ {1} \dots x _ {n} ) $, $ y = (y _ {1} \dots y _ {n} ) $ are points in the Euclidean space $ \mathbf R ^ {n} $, $ n \geq 2 $; $ d \mu $ is a Borel measure on $ \mathbf R ^ {n} $;
$$ G _ \alpha (x) = \ 2 ^ {(2 - n - \alpha ) / 2 } \pi ^ {-n / 2 } \left [ \Gamma \left ( { \frac \alpha {2} } \right ) \right ] ^ {-1} K _ {(n - \alpha ) / 2 } (| x |) | x | ^ {( \alpha - n) / 2 } , $$
$$ | x | = \left ( \sum _ {i = 1 } ^ { n } | x _ {i} ^ {2} | \right ) ^ {1/2} , $$
and $ K _ \nu (z) $ is the modified cylinder function (or Bessel function, cf. Cylinder functions) of the second kind of order $ \nu $ or the Macdonald function of order $ \nu $; $ G _ \alpha (x) $ is called a Bessel kernel.
The principal properties of the Bessel kernels $ G _ \alpha (x) $ are the same as those of the Riesz kernels (cf. Riesz potential), viz., they are positive, continuous for $ x \neq 0 $, can be composed
$$ \int\limits _ {\mathbf R ^ {n} } G _ \alpha (x - y) G _ \beta (y) dy = \ G _ {\alpha + \beta } (x), $$
but, unlike the Riesz potentials, Bessel potentials are applicable for all $ \alpha > 0 $, since
$$ G _ \alpha (x) \sim \ 2 ^ {(1 - n - \alpha ) / 2 } \pi ^ {(1 - n) / 2 } \left [ \Gamma \left ( { \frac \alpha {2} } \right ) \right ] ^ {-1} | x | ^ {( \alpha - n - 1) / 2 } e ^ {- | x | } , $$
as $ | x | \rightarrow \infty $.
If $ \alpha > 2m $, where $ m $ is a natural number, and the measure $ d \mu $ is absolutely continuous with square-integrable density $ f(y) \in L _ {2} ( \mathbf R ^ {2m} ) $, the Bessel potentials satisfy the identities:
$$ (1 - \Delta ) ^ {m} P _ \alpha (x) = \ P _ {\alpha - 2m } (x), $$
and
$$ (1 - \Delta ) ^ {m} P _ {2m} (x) = \ f (x), $$
where $ \Delta $ is the Laplace operator on $ \mathbf R ^ {2m} $. In other words, the function $ G _ {2m} (x) $ is a fundamental solution of the operator $ (1 - \Delta ) ^ {m} $.
References
[1] | S.M. Nikol'skii, "Approximation of functions of several variables and imbedding theorems" , Springer (1975) (Translated from Russian) |
[2] | M. Aronszajn, K.T. Smith, "Theory of Bessel potentials I" Ann. Inst. Fourier (Grenoble) , 11 (1961) pp. 385–475 |
Comments
The function $ K _ \nu (z) $ is usually called the modified Bessel function of the third kind.
Bessel potential. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bessel_potential&oldid=13961