Namespaces
Variants
Actions

Difference between revisions of "Bernstein interpolation method"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A sequence of algebraic polynomials converging uniformly on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b0157101.png" /> to a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b0157102.png" /> that is continuous on this interval. More precisely, Bernstein's interpolation method is a sequence of algebraic polynomials
+
<!--
 +
b0157101.png
 +
$#A+1 = 35 n = 0
 +
$#C+1 = 35 : ~/encyclopedia/old_files/data/B015/B.0105710 Bernstein interpolation method
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b0157103.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A sequence of algebraic polynomials converging uniformly on  $  [-1, 1] $
 +
to a function  $  f(x) $
 +
that is continuous on this interval. More precisely, Bernstein's interpolation method is a sequence of algebraic polynomials
 +
 
 +
$$
 +
P _ {n} (f; x)  = \
 +
 
 +
\frac{\sum _ { k=1 } ^ { n }  A _ {k}  ^ {(n)} T _ {n} (x) }{T _ {n} (x _ {k}  ^ {(n)} )(x-x _ {k}  ^ {(n)} ) }
 +
,
 +
\  n = 1, 2 \dots
 +
$$
  
 
where the
 
where the
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b0157104.png" /></td> </tr></table>
+
$$
 +
T _ {n} (x)  = \cos ( n  \mathop{\rm arc}  \cos  x)
 +
$$
  
 
are the [[Chebyshev polynomials|Chebyshev polynomials]]; the
 
are the [[Chebyshev polynomials|Chebyshev polynomials]]; the
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b0157105.png" /></td> </tr></table>
+
$$
 +
x _ {k}  ^ {(n)}  = \
 +
\cos \left [
 +
\frac{(2k-1) \pi }{2n}
 +
\right ]
 +
$$
  
 
are the interpolation nodes; and
 
are the interpolation nodes; and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b0157106.png" /></td> </tr></table>
+
$$
 +
A _ {k}  ^ {(n)}  = f (x _ {k}  ^ {(n)} )
 +
$$
  
if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b0157107.png" /> is an arbitrary positive integer, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b0157108.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b0157109.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571011.png" /> otherwise
+
if $  k \neq 2ls, l $
 +
is an arbitrary positive integer, $  n = 2 l q + r $,
 +
$  q \geq  1 $,  
 +
0 \leq  r < 2l $,  
 +
$  s = 1 \dots q; $
 +
otherwise
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571012.png" /></td> </tr></table>
+
$$
 +
A _ {2ls}  ^ {(n)}  = \
 +
\sum _ { i=0 } ^ { l-1 }
 +
f(x _ {2l (s - 1) + 2i + 1 }  ^ {(n)} ) -
 +
\sum _ { i=1 } ^ { l-1 }
 +
f (x _ {2l (s - 1) + 2i }  ^ {(n)} ).
 +
$$
  
The ratio between the degree of the polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571013.png" /> and the number of points at which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571014.png" /> equals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571015.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571016.png" />, which tends to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571017.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571018.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571019.png" /> is sufficiently large, this limit is arbitrary close to one. The method was introduced by S.N. Bernstein [S.N. Bernshtein] in 1931 [[#References|[1]]].
+
The ratio between the degree of the polynomial $  P _ {n} (f;  x) $
 +
and the number of points at which $  P _ {n} (f;  x) $
 +
equals $  f(x) $
 +
is $  (n - 1)/(n - q) $,  
 +
which tends to $  2l/(2l - 1) $
 +
as $  n \rightarrow \infty $;  
 +
if $  l $
 +
is sufficiently large, this limit is arbitrary close to one. The method was introduced by S.N. Bernstein [S.N. Bernshtein] in 1931 [[#References|[1]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S.N. Bernshtein,  , ''Collected works'' , '''2''' , Moscow  (1954)  pp. 130–140  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S.N. Bernshtein,  , ''Collected works'' , '''2''' , Moscow  (1954)  pp. 130–140  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
This method of interpolation seems not very well known in the West. There is, however, a well-known method of Bernstein that uses the special interpolation nodes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571021.png" />, for bounded functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571022.png" />. This method is given by the [[Bernstein polynomials|Bernstein polynomials]]. The sequence of Bernstein polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571023.png" /> constructed for a bounded function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571024.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571025.png" /> converges to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571026.png" /> at each point of continuity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571027.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571028.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571029.png" /> is continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571030.png" />, the sequence converges uniformly (to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571031.png" />) on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571032.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571033.png" /> is differentiable, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571034.png" /> (at each point of continuity of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571035.png" />), cf [[#References|[a1]]].
+
This method of interpolation seems not very well known in the West. There is, however, a well-known method of Bernstein that uses the special interpolation nodes $  k/n $,  
 +
$  k = 0 \dots n $,  
 +
for bounded functions on $  [0, 1] $.  
 +
This method is given by the [[Bernstein polynomials|Bernstein polynomials]]. The sequence of Bernstein polynomials $  B _ {n} (f;  x) $
 +
constructed for a bounded function $  f $
 +
on $  [0, 1] $
 +
converges to $  f (x) $
 +
at each point of continuity $  x \in [0, 1] $
 +
of $  f $.  
 +
If $  f $
 +
is continuous on $  [0, 1] $,
 +
the sequence converges uniformly (to $  f  $)  
 +
on $  [0, 1] $.  
 +
If $  f $
 +
is differentiable, $  B _ {n} ^ { \prime } (f;  x) \rightarrow f ^ { \prime } (x) $(
 +
at each point of continuity of $  f ^ { \prime } $),  
 +
cf [[#References|[a1]]].
  
 
This method of Bernstein is often used to prove the [[Weierstrass theorem|Weierstrass theorem]] (on approximation). For a generalization of the method (the monotone-operator theorem), see [[#References|[a2]]], Chapt. 3, Sect. 3. See also [[Approximation of functions, linear methods|Approximation of functions, linear methods]].
 
This method of Bernstein is often used to prove the [[Weierstrass theorem|Weierstrass theorem]] (on approximation). For a generalization of the method (the monotone-operator theorem), see [[#References|[a2]]], Chapt. 3, Sect. 3. See also [[Approximation of functions, linear methods|Approximation of functions, linear methods]].

Latest revision as of 10:58, 29 May 2020


A sequence of algebraic polynomials converging uniformly on $ [-1, 1] $ to a function $ f(x) $ that is continuous on this interval. More precisely, Bernstein's interpolation method is a sequence of algebraic polynomials

$$ P _ {n} (f; x) = \ \frac{\sum _ { k=1 } ^ { n } A _ {k} ^ {(n)} T _ {n} (x) }{T _ {n} (x _ {k} ^ {(n)} )(x-x _ {k} ^ {(n)} ) } , \ n = 1, 2 \dots $$

where the

$$ T _ {n} (x) = \cos ( n \mathop{\rm arc} \cos x) $$

are the Chebyshev polynomials; the

$$ x _ {k} ^ {(n)} = \ \cos \left [ \frac{(2k-1) \pi }{2n} \right ] $$

are the interpolation nodes; and

$$ A _ {k} ^ {(n)} = f (x _ {k} ^ {(n)} ) $$

if $ k \neq 2ls, l $ is an arbitrary positive integer, $ n = 2 l q + r $, $ q \geq 1 $, $ 0 \leq r < 2l $, $ s = 1 \dots q; $ otherwise

$$ A _ {2ls} ^ {(n)} = \ \sum _ { i=0 } ^ { l-1 } f(x _ {2l (s - 1) + 2i + 1 } ^ {(n)} ) - \sum _ { i=1 } ^ { l-1 } f (x _ {2l (s - 1) + 2i } ^ {(n)} ). $$

The ratio between the degree of the polynomial $ P _ {n} (f; x) $ and the number of points at which $ P _ {n} (f; x) $ equals $ f(x) $ is $ (n - 1)/(n - q) $, which tends to $ 2l/(2l - 1) $ as $ n \rightarrow \infty $; if $ l $ is sufficiently large, this limit is arbitrary close to one. The method was introduced by S.N. Bernstein [S.N. Bernshtein] in 1931 [1].

References

[1] S.N. Bernshtein, , Collected works , 2 , Moscow (1954) pp. 130–140 (In Russian)

Comments

This method of interpolation seems not very well known in the West. There is, however, a well-known method of Bernstein that uses the special interpolation nodes $ k/n $, $ k = 0 \dots n $, for bounded functions on $ [0, 1] $. This method is given by the Bernstein polynomials. The sequence of Bernstein polynomials $ B _ {n} (f; x) $ constructed for a bounded function $ f $ on $ [0, 1] $ converges to $ f (x) $ at each point of continuity $ x \in [0, 1] $ of $ f $. If $ f $ is continuous on $ [0, 1] $, the sequence converges uniformly (to $ f $) on $ [0, 1] $. If $ f $ is differentiable, $ B _ {n} ^ { \prime } (f; x) \rightarrow f ^ { \prime } (x) $( at each point of continuity of $ f ^ { \prime } $), cf [a1].

This method of Bernstein is often used to prove the Weierstrass theorem (on approximation). For a generalization of the method (the monotone-operator theorem), see [a2], Chapt. 3, Sect. 3. See also Approximation of functions, linear methods.

References

[a1] P.J. Davis, "Interpolation and approximation" , Dover, reprint (1975)
[a2] E.W. Cheney, "Introduction to approximation theory" , Chelsea, reprint (1982) pp. 203ff
How to Cite This Entry:
Bernstein interpolation method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bernstein_interpolation_method&oldid=11602
This article was adapted from an original article by P.P. Korovkin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article