Namespaces
Variants
Actions

Difference between revisions of "Benz plane"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
b1102901.png
 +
$#A+1 = 91 n = 0
 +
$#C+1 = 91 : ~/encyclopedia/old_files/data/B110/B.1100290 Benz plane,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''circle plane''
 
''circle plane''
  
 
A common concept for the geometries of Möbius, Laguerre and Lie, and Minkowski, as given by W. Benz in [[#References|[a1]]].
 
A common concept for the geometries of Möbius, Laguerre and Lie, and Minkowski, as given by W. Benz in [[#References|[a1]]].
  
A Benz plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b1102901.png" /> consist of a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b1102902.png" /> of points and two sets of subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b1102903.png" />, namely the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b1102904.png" /> of generators and the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b1102905.png" /> of circles, satisfying:
+
A Benz plane $  {\mathcal B} = ( P, \mathfrak G, \mathfrak C ) $
 +
consist of a set $  P $
 +
of points and two sets of subsets of $  P $,  
 +
namely the set $  \mathfrak G $
 +
of generators and the set $  \mathfrak C $
 +
of circles, satisfying:
  
 
1) each generator intersects each circle in exactly one point;
 
1) each generator intersects each circle in exactly one point;
Line 9: Line 26:
 
2) through any three points no two of which are on a common generator there passes exactly one circle;
 
2) through any three points no two of which are on a common generator there passes exactly one circle;
  
3) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b1102906.png" /> is a circle, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b1102907.png" /> is a point on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b1102908.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b1102909.png" /> is a point outside <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029010.png" /> and not on a common generator with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029011.png" />, then there is exactly one circle through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029012.png" /> intersecting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029013.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029014.png" /> only (the tangency axiom);
+
3) if $  C $
 +
is a circle, $  p $
 +
is a point on $  C $
 +
and $  q $
 +
is a point outside $  C $
 +
and not on a common generator with $  p $,  
 +
then there is exactly one circle through $  q $
 +
intersecting $  C $
 +
at $  p $
 +
only (the tangency axiom);
  
4) there is a circle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029015.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029016.png" /> contains at least three points;
+
4) there is a circle $  C \neq P $,  
 +
and $  C $
 +
contains at least three points;
  
5a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029017.png" /> is a Möbius plane if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029018.png" />;
+
5a) $  {\mathcal B} $
 +
is a Möbius plane if $  \mathfrak G = \emptyset $;
  
5b) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029019.png" /> is a Laguerre plane if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029020.png" /> is a partition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029021.png" />;
+
5b) $  {\mathcal B} $
 +
is a Laguerre plane if $  \mathfrak G $
 +
is a partition of $  P $;
  
5c) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029022.png" /> is a Minkowski plane if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029023.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029025.png" /> partitions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029026.png" />, and any generator of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029027.png" /> intersects any generator of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029028.png" /> in exactly one point.
+
5c) $  {\mathcal B} $
 +
is a Minkowski plane if $  \mathfrak G = \mathfrak G _ {1} \cup \mathfrak G _ {2} $,  
 +
with $  \mathfrak G _ {1} $
 +
and $  \mathfrak G _ {2} $
 +
partitions of $  P $,  
 +
and any generator of $  \mathfrak G _ {1} $
 +
intersects any generator of $  \mathfrak G _ {2} $
 +
in exactly one point.
  
For a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029029.png" /> one defines its derived affine plane, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029030.png" />, as follows. The points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029031.png" /> are the points different from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029032.png" /> and outside all generators through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029033.png" />. The lines of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029034.png" /> are the generators not passing through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029035.png" /> and the circles through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029036.png" /> minus the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029037.png" /> itself.
+
For a point $  p \in P $
 +
one defines its derived affine plane, $  {\mathcal B} _ {p} $,  
 +
as follows. The points of $  {\mathcal B} _ {p} $
 +
are the points different from $  p $
 +
and outside all generators through $  p $.  
 +
The lines of $  {\mathcal B} _ {p} $
 +
are the generators not passing through $  p $
 +
and the circles through $  p $
 +
minus the point $  p $
 +
itself.
  
So, a Benz plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029038.png" /> is a special kind of [[Chain space|chain space]]: Two (different) points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029039.png" /> are distant if and only if they do not belong to a common generator.
+
So, a Benz plane $  {\mathcal B} $
 +
is a special kind of [[Chain space|chain space]]: Two (different) points of $  {\mathcal B} $
 +
are distant if and only if they do not belong to a common generator.
  
An affine model of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029040.png" /> is obtained by adding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029041.png" /> the traces of all circles not through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029042.png" />.
+
An affine model of $  {\mathcal B} $
 +
is obtained by adding to $  {\mathcal B} _ {p} $
 +
the traces of all circles not through $  p $.
  
An imbeddable (or egg-like) Benz plane is isomorphic to a Benz plane of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029043.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029044.png" /> a subset of a (projective or affine) three-dimensional space and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029045.png" /> consist of planar sections of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029046.png" />:
+
An imbeddable (or egg-like) Benz plane is isomorphic to a Benz plane of the form $  {\mathcal B} = ( P, \mathfrak G, \mathfrak C ) $
 +
with $  P $
 +
a subset of a (projective or affine) three-dimensional space and $  \mathfrak C $
 +
consist of planar sections of $  P $:
  
a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029047.png" /> is an [[Ovoid(2)|ovoid]];
+
a) $  P $
 +
is an [[Ovoid(2)|ovoid]];
  
b) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029048.png" /> is a [[Cylindrical surface (cylinder)|cylindrical surface (cylinder)]] over an [[Oval|oval]] as directrix, and hence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029049.png" /> is covered by its set of generators;
+
b) $  P $
 +
is a [[Cylindrical surface (cylinder)|cylindrical surface (cylinder)]] over an [[Oval|oval]] as directrix, and hence $  P $
 +
is covered by its set of generators;
  
c) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029050.png" /> is a ruled [[Quadric|quadric]] in projective <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029051.png" />-space (a hyperbolic quadric), and hence has two sets of (mutually skew) straight lines covering it. In any case, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029052.png" /> consists of the generators on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029053.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029054.png" /> consists of the intersections of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029055.png" /> with all planes containing more than one point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029056.png" /> but no line of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029057.png" />. [[Stereographic projection|Stereographic projection]] once more gives an affine model of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029058.png" />.
+
c) $  P $
 +
is a ruled [[Quadric|quadric]] in projective $  3 $-
 +
space (a hyperbolic quadric), and hence has two sets of (mutually skew) straight lines covering it. In any case, $  \mathfrak G $
 +
consists of the generators on $  P $
 +
and $  \mathfrak C $
 +
consists of the intersections of $  P $
 +
with all planes containing more than one point of $  P $
 +
but no line of $  P $.  
 +
[[Stereographic projection|Stereographic projection]] once more gives an affine model of $  {\mathcal B} $.
  
A classical Benz plane is a [[Chain geometry|chain geometry]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029059.png" /> where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029060.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029061.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029062.png" />-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029063.png" />-vector space. There are three such algebras.
+
A classical Benz plane is a [[Chain geometry|chain geometry]] $  \Sigma ( K,A ) $
 +
where the $  K $-
 +
algebra $  A $
 +
is a $  2 $-
 +
dimensional $  K $-
 +
vector space. There are three such algebras.
  
i) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029064.png" /> is a quadratic field extension (cf. [[Extension of a field|Extension of a field]]). Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029065.png" /> is a Möbius plane.
+
i) $  A $
 +
is a quadratic field extension (cf. [[Extension of a field|Extension of a field]]). Then $  \Sigma ( K,A ) $
 +
is a Möbius plane.
  
ii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029066.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029067.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029068.png" /> is a Laguerre plane.
+
ii) $  A = K [ \epsilon ] $
 +
with $  \epsilon  ^ {2} = 0 $.  
 +
Then $  \Sigma ( K,A ) $
 +
is a Laguerre plane.
  
iii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029069.png" /> (addition and multiplication componentwise). Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029070.png" /> is a Minkowski plane. The classical Benz planes are imbeddable. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029071.png" /> becomes an elliptic quadric, a quadric cone without its vertex or a hyperbolic quadric, respectively.
+
iii) $  A = K \times K $(
 +
addition and multiplication componentwise). Then $  \Sigma ( K,A ) $
 +
is a Minkowski plane. The classical Benz planes are imbeddable. Here, $  P $
 +
becomes an elliptic quadric, a quadric cone without its vertex or a hyperbolic quadric, respectively.
  
The classical affine Benz planes (affine models) are as follows: There is an affine plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029072.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029073.png" /> and in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029074.png" /> one takes:
+
The classical affine Benz planes (affine models) are as follows: There is an affine plane $  {\mathcal A} $
 +
over $  K $
 +
and in $  {\mathcal A} $
 +
one takes:
  
 
I) all straight lines and circles;
 
I) all straight lines and circles;
Line 49: Line 130:
 
III) all straight lines not belonging to two given parallel classes and all hyperbolas having asymptotes in these parallel classes. Many theorems from [[Euclidean geometry|Euclidean geometry]] valid in I) (e.g., the theorem on inscribed angles) also hold in II) and III), see [[#References|[a4]]], §3.4.
 
III) all straight lines not belonging to two given parallel classes and all hyperbolas having asymptotes in these parallel classes. Many theorems from [[Euclidean geometry|Euclidean geometry]] valid in I) (e.g., the theorem on inscribed angles) also hold in II) and III), see [[#References|[a4]]], §3.4.
  
A Benz plane is called Miquelian if the so-called Miquels condition is valid in it: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029075.png" /> be circles no three of which have a common point but such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029076.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029077.png" /> (subscripts modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029078.png" />), where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029079.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029080.png" /> are not necessarily different points. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029081.png" /> lie on a common circle, then so do <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029082.png" />.
+
A Benz plane is called Miquelian if the so-called Miquels condition is valid in it: Let $  C _ {1} \dots C _ {4} $
 +
be circles no three of which have a common point but such that $  C _ {i} \cap C _ {i + 1 }  = \{ p _ {i} ,q _ {i} \} $
 +
for $  1 \leq  i \leq 4 $(
 +
subscripts modulo $  4 $),  
 +
where $  p _ {i} $
 +
and $  q _ {i} $
 +
are not necessarily different points. If $  p _ {1} \dots p _ {4} $
 +
lie on a common circle, then so do $  q _ {1} \dots q _ {4} $.
  
 
The following theorem was proved by B.L. van der Waerden and L.J. Smid in 1935 for I), II) and by G. Kaerlain in 1970 for III): A Benz plane is classical if and only if it is Miquelian.
 
The following theorem was proved by B.L. van der Waerden and L.J. Smid in 1935 for I), II) and by G. Kaerlain in 1970 for III): A Benz plane is classical if and only if it is Miquelian.
  
T.J. Kahn (1980) has proved that a Benz plane is imbeddable if and only if it satisfies the so-called bundle condition: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029083.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029084.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029085.png" />, be eight points no two of which are on a common generator. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029086.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029087.png" />, belong to a common circle in five cases, then this is also true for the sixth case.
+
T.J. Kahn (1980) has proved that a Benz plane is imbeddable if and only if it satisfies the so-called bundle condition: Let $  p _ {i} $,  
 +
$  q _ {i} $,  
 +
$  i = 1 \dots 4 $,  
 +
be eight points no two of which are on a common generator. If $  p _ {i} ,q _ {i} ,p _ {j} ,q _ {j} $,
 +
$  1 \leq  i,j \leq 4 $,  
 +
belong to a common circle in five cases, then this is also true for the sixth case.
  
A finite Benz plane is a Benz plane with a finite point set. A finite Benz plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029088.png" /> has order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029089.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029090.png" />. This number is independent of the choice of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029091.png" />. The following theorem was proved by P. Dembowski (1964) for I) and by W. Heise (1974) for III): A finite Möbius or Minkowski plane of even order is imbeddable.
+
A finite Benz plane is a Benz plane with a finite point set. A finite Benz plane $  {\mathcal B} = ( P, \mathfrak G, \mathfrak C ) $
 +
has order $  | C | -1 $
 +
for any $  C \in \mathfrak C $.  
 +
This number is independent of the choice of $  C $.  
 +
The following theorem was proved by P. Dembowski (1964) for I) and by W. Heise (1974) for III): A finite Möbius or Minkowski plane of even order is imbeddable.
  
 
A direct consequence of the Segre–Barlotti theorem (that an ovoid or oval in a finite Desarguesian projective space is a quadric or conic) is that a finite imbeddable Benz plane of odd order is Miquelian.
 
A direct consequence of the Segre–Barlotti theorem (that an ovoid or oval in a finite Desarguesian projective space is a quadric or conic) is that a finite imbeddable Benz plane of odd order is Miquelian.

Latest revision as of 10:58, 29 May 2020


circle plane

A common concept for the geometries of Möbius, Laguerre and Lie, and Minkowski, as given by W. Benz in [a1].

A Benz plane $ {\mathcal B} = ( P, \mathfrak G, \mathfrak C ) $ consist of a set $ P $ of points and two sets of subsets of $ P $, namely the set $ \mathfrak G $ of generators and the set $ \mathfrak C $ of circles, satisfying:

1) each generator intersects each circle in exactly one point;

2) through any three points no two of which are on a common generator there passes exactly one circle;

3) if $ C $ is a circle, $ p $ is a point on $ C $ and $ q $ is a point outside $ C $ and not on a common generator with $ p $, then there is exactly one circle through $ q $ intersecting $ C $ at $ p $ only (the tangency axiom);

4) there is a circle $ C \neq P $, and $ C $ contains at least three points;

5a) $ {\mathcal B} $ is a Möbius plane if $ \mathfrak G = \emptyset $;

5b) $ {\mathcal B} $ is a Laguerre plane if $ \mathfrak G $ is a partition of $ P $;

5c) $ {\mathcal B} $ is a Minkowski plane if $ \mathfrak G = \mathfrak G _ {1} \cup \mathfrak G _ {2} $, with $ \mathfrak G _ {1} $ and $ \mathfrak G _ {2} $ partitions of $ P $, and any generator of $ \mathfrak G _ {1} $ intersects any generator of $ \mathfrak G _ {2} $ in exactly one point.

For a point $ p \in P $ one defines its derived affine plane, $ {\mathcal B} _ {p} $, as follows. The points of $ {\mathcal B} _ {p} $ are the points different from $ p $ and outside all generators through $ p $. The lines of $ {\mathcal B} _ {p} $ are the generators not passing through $ p $ and the circles through $ p $ minus the point $ p $ itself.

So, a Benz plane $ {\mathcal B} $ is a special kind of chain space: Two (different) points of $ {\mathcal B} $ are distant if and only if they do not belong to a common generator.

An affine model of $ {\mathcal B} $ is obtained by adding to $ {\mathcal B} _ {p} $ the traces of all circles not through $ p $.

An imbeddable (or egg-like) Benz plane is isomorphic to a Benz plane of the form $ {\mathcal B} = ( P, \mathfrak G, \mathfrak C ) $ with $ P $ a subset of a (projective or affine) three-dimensional space and $ \mathfrak C $ consist of planar sections of $ P $:

a) $ P $ is an ovoid;

b) $ P $ is a cylindrical surface (cylinder) over an oval as directrix, and hence $ P $ is covered by its set of generators;

c) $ P $ is a ruled quadric in projective $ 3 $- space (a hyperbolic quadric), and hence has two sets of (mutually skew) straight lines covering it. In any case, $ \mathfrak G $ consists of the generators on $ P $ and $ \mathfrak C $ consists of the intersections of $ P $ with all planes containing more than one point of $ P $ but no line of $ P $. Stereographic projection once more gives an affine model of $ {\mathcal B} $.

A classical Benz plane is a chain geometry $ \Sigma ( K,A ) $ where the $ K $- algebra $ A $ is a $ 2 $- dimensional $ K $- vector space. There are three such algebras.

i) $ A $ is a quadratic field extension (cf. Extension of a field). Then $ \Sigma ( K,A ) $ is a Möbius plane.

ii) $ A = K [ \epsilon ] $ with $ \epsilon ^ {2} = 0 $. Then $ \Sigma ( K,A ) $ is a Laguerre plane.

iii) $ A = K \times K $( addition and multiplication componentwise). Then $ \Sigma ( K,A ) $ is a Minkowski plane. The classical Benz planes are imbeddable. Here, $ P $ becomes an elliptic quadric, a quadric cone without its vertex or a hyperbolic quadric, respectively.

The classical affine Benz planes (affine models) are as follows: There is an affine plane $ {\mathcal A} $ over $ K $ and in $ {\mathcal A} $ one takes:

I) all straight lines and circles;

II) all straight lines not belonging to a given parallel class and all parabolas having axis in this parallel class;

III) all straight lines not belonging to two given parallel classes and all hyperbolas having asymptotes in these parallel classes. Many theorems from Euclidean geometry valid in I) (e.g., the theorem on inscribed angles) also hold in II) and III), see [a4], §3.4.

A Benz plane is called Miquelian if the so-called Miquels condition is valid in it: Let $ C _ {1} \dots C _ {4} $ be circles no three of which have a common point but such that $ C _ {i} \cap C _ {i + 1 } = \{ p _ {i} ,q _ {i} \} $ for $ 1 \leq i \leq 4 $( subscripts modulo $ 4 $), where $ p _ {i} $ and $ q _ {i} $ are not necessarily different points. If $ p _ {1} \dots p _ {4} $ lie on a common circle, then so do $ q _ {1} \dots q _ {4} $.

The following theorem was proved by B.L. van der Waerden and L.J. Smid in 1935 for I), II) and by G. Kaerlain in 1970 for III): A Benz plane is classical if and only if it is Miquelian.

T.J. Kahn (1980) has proved that a Benz plane is imbeddable if and only if it satisfies the so-called bundle condition: Let $ p _ {i} $, $ q _ {i} $, $ i = 1 \dots 4 $, be eight points no two of which are on a common generator. If $ p _ {i} ,q _ {i} ,p _ {j} ,q _ {j} $, $ 1 \leq i,j \leq 4 $, belong to a common circle in five cases, then this is also true for the sixth case.

A finite Benz plane is a Benz plane with a finite point set. A finite Benz plane $ {\mathcal B} = ( P, \mathfrak G, \mathfrak C ) $ has order $ | C | -1 $ for any $ C \in \mathfrak C $. This number is independent of the choice of $ C $. The following theorem was proved by P. Dembowski (1964) for I) and by W. Heise (1974) for III): A finite Möbius or Minkowski plane of even order is imbeddable.

A direct consequence of the Segre–Barlotti theorem (that an ovoid or oval in a finite Desarguesian projective space is a quadric or conic) is that a finite imbeddable Benz plane of odd order is Miquelian.

For further information see the surveys [a2], [a5] (e.g., classification of Benz planes by automorphism groups); for topological Benz planes see [a5]. A more general concept, using unitals instead of quadrics (i.e., self-conjugate points of a Hermitian form instead of a quadratic form), arose in [a1]; for subsequent developments, see [a2]. For projectivities in Benz planes see [a3].

References

[a1] W. Benz, "Vorlesungen über Geometrie der Algebren" , Springer (1973)
[a2] A. Delandsheer, "Dimensional linear spaces" F. Buekenhout (ed.) , Handbook of Incidence Geometry , North-Holland (1995)
[a3] P. Plaumann, K. Strambach, "Geometry: von Staudt's point of view" , Reidel (1981)
[a4] E.M. Schröder, "Metric geometry" F. Buekenhout (ed.) , Handbook of Incidence Geometry , North-Holland (1995)
[a5] G.F. Steinke, "Topological circle geometries" F. Buekenhout (ed.) , Handbook of Incidence Geometry , North-Holland (1995)
How to Cite This Entry:
Benz plane. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Benz_plane&oldid=11688
This article was adapted from an original article by A. Herzer (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article