Difference between revisions of "Baer multiplication"
m (link) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | b0150201.png | ||
+ | $#A+1 = 20 n = 0 | ||
+ | $#C+1 = 20 : ~/encyclopedia/old_files/data/B015/B.0105020 Baer multiplication | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | |||
+ | A binary operation on the set of classes of [[Extension of a module|extensions of modules]], proposed by R. Baer [[#References|[1]]]. Let $ A $ | ||
+ | and $ B $ | ||
+ | be arbitrary modules. An extension of $ A $ | ||
+ | with kernel $ B $ | ||
+ | is an [[exact sequence]]: | ||
+ | |||
+ | $$ \tag{1 } | ||
+ | 0 \rightarrow B \rightarrow X \rightarrow A \rightarrow 0. | ||
+ | $$ | ||
The extension (1) is called ''equivalent'' to the extension | The extension (1) is called ''equivalent'' to the extension | ||
− | + | $$ | |
+ | 0 \rightarrow B \rightarrow X _ {1} \rightarrow A \rightarrow 0 | ||
+ | $$ | ||
+ | |||
+ | if there exists a homomorphism $ \alpha : X \rightarrow X _ {1} $ | ||
+ | forming part of the commutative diagram | ||
+ | |||
+ | $$ | ||
− | + | \begin{array}{ccccc} | |
+ | {} &{} & X &{} &{} \\ | ||
+ | {} &\nearrow &{} &\searrow &{} \\ | ||
+ | B &{} &\downarrow &{} & A \\ | ||
+ | {} &\searrow &{} &\nearrow &{} \\ | ||
+ | {} &{} &X _ {1} &{} &{} \\ | ||
+ | \end{array} | ||
− | + | $$ | |
− | The set of equivalence classes of extensions is denoted by | + | The set of equivalence classes of extensions is denoted by $ \mathop{\rm Ext} (A, B) $. |
+ | The Baer multiplication on $ \mathop{\rm Ext} (A, B) $ | ||
+ | is induced by the operation of products of extensions defined as follows. Let | ||
− | + | $$ \tag{2 } | |
+ | 0 \rightarrow B \mathop \rightarrow \limits ^ \beta X \mathop \rightarrow \limits ^ \alpha A \rightarrow 0, | ||
+ | $$ | ||
− | + | $$ \tag{3 } | |
+ | 0 \rightarrow B \rightarrow ^ { {\beta _ 1} } Y \rightarrow ^ { {\alpha _ 1} } A \rightarrow 0 | ||
+ | $$ | ||
− | be two extensions. In the direct sum | + | be two extensions. In the direct sum $ X \oplus Y $ |
+ | the submodules | ||
− | + | $$ | |
+ | C = \{ {(x, y) } : { | ||
+ | \alpha (x) = \alpha _ {1} (y) } \} | ||
+ | $$ | ||
and | and | ||
− | + | $$ | |
+ | D = \{ {(-x, y) } : { | ||
+ | x = \beta (b),\ | ||
+ | y = \beta _ {1} (b) } \} | ||
+ | $$ | ||
− | are selected. Clearly, | + | are selected. Clearly, $ D \subset C $, |
+ | so that one can define the quotient module $ Z = C/D $. | ||
+ | The Baer product of the extensions (2) and (3) is the extension | ||
− | + | $$ | |
+ | 0 \rightarrow B \rightarrow ^ { {\beta _ 2} } Z \rightarrow ^ { {\alpha _ 2} } A \rightarrow 0, | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | \beta _ {2} (b) = \ | ||
+ | [ \beta (b), 0] = \ | ||
+ | [0, \beta ^ \prime (b)], | ||
+ | $$ | ||
and | and | ||
− | + | $$ | |
+ | \alpha _ {2} [x, y] = \ | ||
+ | \alpha (x) = \ | ||
+ | \alpha _ {1} (y). | ||
+ | $$ | ||
====References==== | ====References==== |
Latest revision as of 10:26, 27 April 2020
A binary operation on the set of classes of extensions of modules, proposed by R. Baer [1]. Let $ A $
and $ B $
be arbitrary modules. An extension of $ A $
with kernel $ B $
is an exact sequence:
$$ \tag{1 } 0 \rightarrow B \rightarrow X \rightarrow A \rightarrow 0. $$
The extension (1) is called equivalent to the extension
$$ 0 \rightarrow B \rightarrow X _ {1} \rightarrow A \rightarrow 0 $$
if there exists a homomorphism $ \alpha : X \rightarrow X _ {1} $ forming part of the commutative diagram
$$ \begin{array}{ccccc} {} &{} & X &{} &{} \\ {} &\nearrow &{} &\searrow &{} \\ B &{} &\downarrow &{} & A \\ {} &\searrow &{} &\nearrow &{} \\ {} &{} &X _ {1} &{} &{} \\ \end{array} $$
The set of equivalence classes of extensions is denoted by $ \mathop{\rm Ext} (A, B) $. The Baer multiplication on $ \mathop{\rm Ext} (A, B) $ is induced by the operation of products of extensions defined as follows. Let
$$ \tag{2 } 0 \rightarrow B \mathop \rightarrow \limits ^ \beta X \mathop \rightarrow \limits ^ \alpha A \rightarrow 0, $$
$$ \tag{3 } 0 \rightarrow B \rightarrow ^ { {\beta _ 1} } Y \rightarrow ^ { {\alpha _ 1} } A \rightarrow 0 $$
be two extensions. In the direct sum $ X \oplus Y $ the submodules
$$ C = \{ {(x, y) } : { \alpha (x) = \alpha _ {1} (y) } \} $$
and
$$ D = \{ {(-x, y) } : { x = \beta (b),\ y = \beta _ {1} (b) } \} $$
are selected. Clearly, $ D \subset C $, so that one can define the quotient module $ Z = C/D $. The Baer product of the extensions (2) and (3) is the extension
$$ 0 \rightarrow B \rightarrow ^ { {\beta _ 2} } Z \rightarrow ^ { {\alpha _ 2} } A \rightarrow 0, $$
where
$$ \beta _ {2} (b) = \ [ \beta (b), 0] = \ [0, \beta ^ \prime (b)], $$
and
$$ \alpha _ {2} [x, y] = \ \alpha (x) = \ \alpha _ {1} (y). $$
References
[1] | R. Baer, "Erweiterung von Gruppen und ihren Isomorphismen" Math. Z. , 38 (1934) pp. 374–416 |
[2] | H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) |
Baer multiplication. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Baer_multiplication&oldid=43113