|
|
Line 1: |
Line 1: |
− | The semi-group on a dual [[Banach space|Banach space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a1104001.png" /> composed of the adjoint operators of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a1104002.png" />-semi-group on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a1104003.png" /> (cf. also [[Semi-group of operators|Semi-group of operators]]).
| + | <!-- |
| + | a1104001.png |
| + | $#A+1 = 91 n = 0 |
| + | $#C+1 = 91 : ~/encyclopedia/old_files/data/A110/A.1100400 Adjoint semi\AAhgroup of operators |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a1104004.png" /> be a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a1104006.png" />-semi-group on a Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a1104007.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a1104008.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a1104009.png" /> and
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | i) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040010.png" />, the identity operator on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040011.png" />;
| + | The semi-group on a dual [[Banach space|Banach space]] $ X ^ {*} $ |
| + | composed of the adjoint operators of a $ C _ {0} $- |
| + | semi-group on $ X $( |
| + | cf. also [[Semi-group of operators|Semi-group of operators]]). |
| | | |
− | ii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040012.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040013.png" />;
| + | Let $ \mathbf T = \{ T ( t ) \} _ {t \geq 0 } $ |
| + | be a $ C _ {0} $- |
| + | semi-group on a Banach space $ X $, |
| + | i.e. $ T ( t ) \in {\mathcal L} ( X ) $ |
| + | for all $ t $ |
| + | and |
| | | |
− | iii) the orbits <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040014.png" /> are strongly continuous (cf. [[Strongly-continuous semi-group|Strongly-continuous semi-group]]) on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040015.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040016.png" />. On the dual space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040017.png" />, the adjoint semi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040018.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040019.png" />, satisfies i) and ii), but not necessarily iii). Therefore one defines
| + | i) $ T ( 0 ) = I $, |
| + | the identity operator on $ X $; |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040020.png" /></td> </tr></table>
| + | ii) $ T ( t + s ) = T ( t ) T ( s ) $ |
| + | for all $ t,s \geq 0 $; |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040021.png" /></td> </tr></table>
| + | iii) the orbits $ t \mapsto T ( t ) x $ |
| + | are strongly continuous (cf. [[Strongly-continuous semi-group|Strongly-continuous semi-group]]) on $ [ 0, \infty ) $ |
| + | for all $ x \in X $. |
| + | On the dual space $ X ^ {*} $, |
| + | the adjoint semi-group $ \mathbf T ^ {*} = \{ T ^ {*} ( t ) \} _ {t \geq 0 } $, |
| + | with $ T ^ {*} ( t ) = ( T ( t ) ) ^ {*} $, |
| + | satisfies i) and ii), but not necessarily iii). Therefore one defines |
| | | |
− | This is a norm-closed, weak<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040022.png" />-dense, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040023.png" />-invariant subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040024.png" />, and the restriction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040025.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040026.png" />-semi-group on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040027.png" />, called the strongly continuous adjoint of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040028.png" />. Its infinitesimal generator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040029.png" /> is the part of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040030.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040031.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040032.png" /> is the adjoint of the infinitesimal generator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040033.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040034.png" />. Its spectrum satisfies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040035.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040036.png" /> is reflexive (cf. [[Reflexive space|Reflexive space]]), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040037.png" /> [[#References|[a9]]].
| + | $$ |
| + | X ^ \odt = \{ { x ^ {*} \in X ^ {*} } : { \textrm{ the orbit } } |
| + | $$ |
| | | |
− | Starting from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040038.png" />, one defines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040040.png" />. The natural mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040041.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040042.png" />, is an isomorphic imbedding with values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040043.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040044.png" /> is said to be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040046.png" />-reflexive with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040047.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040048.png" /> maps <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040049.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040050.png" />. This is the case if and only if the resolvent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040051.png" /> is weakly compact for some (hence for all) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040052.png" /> [[#References|[a7]]]. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040053.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040054.png" />-reflexive with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040055.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040056.png" />, then the part of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040057.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040058.png" /> generates a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040059.png" />-semi-group on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040060.png" /> [[#References|[a1]]].
| + | $$ |
| + | \ |
| + | {} {t \mapsto T ^ {*} ( t ) x ^ {*} \textrm{ is strongly continuous on } [ 0, \infty ) } \} . |
| + | $$ |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040061.png" /> be the quotient mapping. If, for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040062.png" />, the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040063.png" /> is separably-valued, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040064.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040065.png" />. Hence, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040066.png" /> extends to a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040067.png" />-group, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040068.png" /> is either trivial or non-separable [[#References|[a4]]].
| + | This is a norm-closed, weak $ * $- |
| + | dense, $ \mathbf T ^ {*} $- |
| + | invariant subspace of $ X ^ {*} $, |
| + | and the restriction $ \mathbf T ^ \odt = \{ T ^ {*} ( t ) \mid _ {X ^ \odt } \} _ {t \geq 0 } $ |
| + | is a $ C _ {0} $- |
| + | semi-group on $ X ^ \odt $, |
| + | called the strongly continuous adjoint of $ \mathbf T $. |
| + | Its infinitesimal generator $ A ^ \odt $ |
| + | is the part of $ A ^ {*} $ |
| + | in $ X ^ \odt $, |
| + | where $ A ^ {*} $ |
| + | is the adjoint of the infinitesimal generator $ A $ |
| + | of $ \mathbf T $. |
| + | Its spectrum satisfies $ \sigma ( A ^ \odt ) = \sigma ( A ^ {*} ) = \sigma ( A ) $. |
| + | If $ X $ |
| + | is reflexive (cf. [[Reflexive space|Reflexive space]]), then $ X ^ \odt = X ^ {*} $[[#References|[a9]]]. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040069.png" /> is a positive <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040070.png" />-semi-group on a [[Banach lattice|Banach lattice]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040071.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040072.png" /> need not be a sublattice of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040073.png" /> [[#References|[a2]]]. If, however, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040074.png" /> has order-continuous norm, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040075.png" /> is even a projection band in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040076.png" /> [[#References|[a8]]]. For a positive <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040077.png" />-semi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040078.png" /> on an arbitrary Banach lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040079.png" /> one has
| + | Starting from $ \mathbf T ^ \odt $, |
| + | one defines $ X ^ {\odt * } = ( X ^ \odt ) ^ {*} $ |
| + | and $ X ^ {\odt \odt } = ( X ^ \odt ) ^ \odt $. |
| + | The natural mapping $ j : X \rightarrow {X ^ {\odt * } } $, |
| + | $ \langle {jx,x ^ \odt } \rangle = \langle {x ^ \odt , x } \rangle $, |
| + | is an isomorphic imbedding with values in $ X ^ {\odt \odt } $, |
| + | and $ X $ |
| + | is said to be $ \odt $- |
| + | reflexive with respect to $ \mathbf T $ |
| + | if $ j $ |
| + | maps $ X $ |
| + | onto $ X ^ {\odt \odt } $. |
| + | This is the case if and only if the resolvent $ ( \lambda - A ) ^ {- 1 } $ |
| + | is weakly compact for some (hence for all) $ \lambda \in \varrho ( A ) $[[#References|[a7]]]. If $ X $ |
| + | is $ \odt $- |
| + | reflexive with respect to $ \mathbf T $ |
| + | and $ B \in {\mathcal L} ( X,X ^ {\odt * } ) $, |
| + | then the part of $ A ^ {\odt * } + B $ |
| + | in $ X $ |
| + | generates a $ C _ {0} $- |
| + | semi-group on $ X $[[#References|[a1]]]. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040080.png" /></td> </tr></table>
| + | Let $ \pi : {X ^ {*} } \rightarrow {X ^ {*} /X ^ \odt } $ |
| + | be the quotient mapping. If, for some $ x ^ {*} \in X ^ {*} $, |
| + | the mapping $ t \mapsto \pi T ^ {*} ( t ) x ^ {*} $ |
| + | is separably-valued, then $ T ^ {*} ( t ) x ^ {*} \in X ^ \odt $ |
| + | for all $ t > 0 $. |
| + | Hence, if $ \mathbf T $ |
| + | extends to a $ C _ {0} $- |
| + | group, then $ X ^ {*} /X ^ \odt $ |
| + | is either trivial or non-separable [[#References|[a4]]]. |
| | | |
− | for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040081.png" />, the disjoint complement of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040082.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040083.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040084.png" /> has a weak order unit, then for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040085.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040086.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040087.png" />, the band generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040088.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040089.png" /> [[#References|[a5]]]. If, for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040090.png" />, the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040091.png" /> is weakly measurable, then, assuming the Martin axiom (cf. [[Suslin hypothesis|Suslin hypothesis]]), for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040092.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040093.png" /> [[#References|[a6]]].
| + | If $ \mathbf T $ |
| + | is a positive $ C _ {0} $- |
| + | semi-group on a [[Banach lattice|Banach lattice]] $ X $, |
| + | then $ X ^ \odt $ |
| + | need not be a sublattice of $ X ^ {*} $[[#References|[a2]]]. If, however, $ X ^ {*} $ |
| + | has order-continuous norm, then $ X ^ \odt $ |
| + | is even a projection band in $ X ^ {*} $[[#References|[a8]]]. For a positive $ C _ {0} $- |
| + | semi-group $ \mathbf T $ |
| + | on an arbitrary Banach lattice $ X $ |
| + | one has |
| + | |
| + | $$ |
| + | {\lim\limits \sup } _ {t \downarrow 0 } \left \| {T ^ {*} ( t ) x ^ {*} - x ^ {*} } \right \| \geq 2 \left \| {x ^ {*} } \right \| |
| + | $$ |
| + | |
| + | for all $ x ^ {*} \in ( X ^ \odt ) ^ {d} $, |
| + | the disjoint complement of $ X ^ \odt $ |
| + | in $ X ^ {*} $. |
| + | If $ ( X ^ \odt ) ^ {d} $ |
| + | has a weak order unit, then for all $ x ^ {*} \in X ^ {*} $ |
| + | and $ t > 0 $ |
| + | one has $ T ^ {*} ( t ) x ^ {*} \in ( X ^ \odt ) ^ {dd } $, |
| + | the band generated by $ X ^ \odt $ |
| + | in $ X ^ {*} $[[#References|[a5]]]. If, for some $ x ^ {*} \in X ^ {*} $, |
| + | the mapping $ t \mapsto T ^ {*} ( t ) x ^ {*} $ |
| + | is weakly measurable, then, assuming the Martin axiom (cf. [[Suslin hypothesis|Suslin hypothesis]]), for all $ t > 0 $ |
| + | one has $ T ^ {*} ( t ) x ^ {*} \in ( X ^ \odt ) ^ {dd } $[[#References|[a6]]]. |
| | | |
| A general reference is [[#References|[a3]]]. | | A general reference is [[#References|[a3]]]. |
The semi-group on a dual Banach space $ X ^ {*} $
composed of the adjoint operators of a $ C _ {0} $-
semi-group on $ X $(
cf. also Semi-group of operators).
Let $ \mathbf T = \{ T ( t ) \} _ {t \geq 0 } $
be a $ C _ {0} $-
semi-group on a Banach space $ X $,
i.e. $ T ( t ) \in {\mathcal L} ( X ) $
for all $ t $
and
i) $ T ( 0 ) = I $,
the identity operator on $ X $;
ii) $ T ( t + s ) = T ( t ) T ( s ) $
for all $ t,s \geq 0 $;
iii) the orbits $ t \mapsto T ( t ) x $
are strongly continuous (cf. Strongly-continuous semi-group) on $ [ 0, \infty ) $
for all $ x \in X $.
On the dual space $ X ^ {*} $,
the adjoint semi-group $ \mathbf T ^ {*} = \{ T ^ {*} ( t ) \} _ {t \geq 0 } $,
with $ T ^ {*} ( t ) = ( T ( t ) ) ^ {*} $,
satisfies i) and ii), but not necessarily iii). Therefore one defines
$$
X ^ \odt = \{ { x ^ {*} \in X ^ {*} } : { \textrm{ the orbit } }
$$
$$
\
{} {t \mapsto T ^ {*} ( t ) x ^ {*} \textrm{ is strongly continuous on } [ 0, \infty ) } \} .
$$
This is a norm-closed, weak $ * $-
dense, $ \mathbf T ^ {*} $-
invariant subspace of $ X ^ {*} $,
and the restriction $ \mathbf T ^ \odt = \{ T ^ {*} ( t ) \mid _ {X ^ \odt } \} _ {t \geq 0 } $
is a $ C _ {0} $-
semi-group on $ X ^ \odt $,
called the strongly continuous adjoint of $ \mathbf T $.
Its infinitesimal generator $ A ^ \odt $
is the part of $ A ^ {*} $
in $ X ^ \odt $,
where $ A ^ {*} $
is the adjoint of the infinitesimal generator $ A $
of $ \mathbf T $.
Its spectrum satisfies $ \sigma ( A ^ \odt ) = \sigma ( A ^ {*} ) = \sigma ( A ) $.
If $ X $
is reflexive (cf. Reflexive space), then $ X ^ \odt = X ^ {*} $[a9].
Starting from $ \mathbf T ^ \odt $,
one defines $ X ^ {\odt * } = ( X ^ \odt ) ^ {*} $
and $ X ^ {\odt \odt } = ( X ^ \odt ) ^ \odt $.
The natural mapping $ j : X \rightarrow {X ^ {\odt * } } $,
$ \langle {jx,x ^ \odt } \rangle = \langle {x ^ \odt , x } \rangle $,
is an isomorphic imbedding with values in $ X ^ {\odt \odt } $,
and $ X $
is said to be $ \odt $-
reflexive with respect to $ \mathbf T $
if $ j $
maps $ X $
onto $ X ^ {\odt \odt } $.
This is the case if and only if the resolvent $ ( \lambda - A ) ^ {- 1 } $
is weakly compact for some (hence for all) $ \lambda \in \varrho ( A ) $[a7]. If $ X $
is $ \odt $-
reflexive with respect to $ \mathbf T $
and $ B \in {\mathcal L} ( X,X ^ {\odt * } ) $,
then the part of $ A ^ {\odt * } + B $
in $ X $
generates a $ C _ {0} $-
semi-group on $ X $[a1].
Let $ \pi : {X ^ {*} } \rightarrow {X ^ {*} /X ^ \odt } $
be the quotient mapping. If, for some $ x ^ {*} \in X ^ {*} $,
the mapping $ t \mapsto \pi T ^ {*} ( t ) x ^ {*} $
is separably-valued, then $ T ^ {*} ( t ) x ^ {*} \in X ^ \odt $
for all $ t > 0 $.
Hence, if $ \mathbf T $
extends to a $ C _ {0} $-
group, then $ X ^ {*} /X ^ \odt $
is either trivial or non-separable [a4].
If $ \mathbf T $
is a positive $ C _ {0} $-
semi-group on a Banach lattice $ X $,
then $ X ^ \odt $
need not be a sublattice of $ X ^ {*} $[a2]. If, however, $ X ^ {*} $
has order-continuous norm, then $ X ^ \odt $
is even a projection band in $ X ^ {*} $[a8]. For a positive $ C _ {0} $-
semi-group $ \mathbf T $
on an arbitrary Banach lattice $ X $
one has
$$
{\lim\limits \sup } _ {t \downarrow 0 } \left \| {T ^ {*} ( t ) x ^ {*} - x ^ {*} } \right \| \geq 2 \left \| {x ^ {*} } \right \|
$$
for all $ x ^ {*} \in ( X ^ \odt ) ^ {d} $,
the disjoint complement of $ X ^ \odt $
in $ X ^ {*} $.
If $ ( X ^ \odt ) ^ {d} $
has a weak order unit, then for all $ x ^ {*} \in X ^ {*} $
and $ t > 0 $
one has $ T ^ {*} ( t ) x ^ {*} \in ( X ^ \odt ) ^ {dd } $,
the band generated by $ X ^ \odt $
in $ X ^ {*} $[a5]. If, for some $ x ^ {*} \in X ^ {*} $,
the mapping $ t \mapsto T ^ {*} ( t ) x ^ {*} $
is weakly measurable, then, assuming the Martin axiom (cf. Suslin hypothesis), for all $ t > 0 $
one has $ T ^ {*} ( t ) x ^ {*} \in ( X ^ \odt ) ^ {dd } $[a6].
A general reference is [a3].
References
[a1] | Ph. Clément, O. Diekmann, M. Gyllenberg, H.J.A.M. Heijmans, H.R. Thieme, "Perturbation theory for dual semigroups, Part I: The sun-reflexive case" Math. Ann. , 277 (1987) pp. 709–725 |
[a2] | A. Grabosch, R. Nagel, "Order structure of the semigroup dual: A counterexample" Indagationes Mathematicae , 92 (1989) pp. 199–201 |
[a3] | J.M.A.M. van Neerven, "The adjoint of a semigroup of linear operators" , Lecture Notes in Mathematics , 1529 , Springer (1992) |
[a4] | J.M.A.M. van Neerven, "A dichotomy theorem for the adjoint of a semigroup of operators" Proc. Amer. Math. Soc. , 119 (1993) pp. 765–774 |
[a5] | J.M.A.M. van Neerven, B. de Pagter, "The adjoint of a positive semigroup" Comp. Math. , 90 (1994) pp. 99–118 |
[a6] | J.M.A.M. van Neerven, B. de Pagter, A.R. Schep, "Weak measurability of the orbits of an adjoint semigroup" G. Ferreyra (ed.) G.R. Goldstein (ed.) F. Neubrander (ed.) , Evolution Equations , Lecture Notes in Pure and Appl. Math. , 168 , M. Dekker (1994) pp. 327–336 |
[a7] | B. de Pagter, "A characterization of sun-reflexivity" Math. Ann. , 283 (1989) pp. 511–518 |
[a8] | B. de Pagter, "A Wiener–Young type theorem for dual semigroups" Acta Appl. Math. 27 (1992) pp. 101–109 |
[a9] | R.S. Phillips, "The adjoint semi-group" Pacific J. Math. , 5 (1955) pp. 269–283 |