Difference between revisions of "Adjoint linear transformation"
(link) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | a0108401.png | ||
+ | $#A+1 = 29 n = 0 | ||
+ | $#C+1 = 29 : ~/encyclopedia/old_files/data/A010/A.0100840 Adjoint linear transformation | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | ''of a linear transformation $ A $'' | |
− | + | The linear transformation $ A ^ {*} $ | |
+ | on a Euclidean space (or [[Unitary space|unitary space]]) $ L $ | ||
+ | such that for all $ x, y \in L $, | ||
+ | the equality | ||
− | + | $$ | |
+ | (Ax, y) = (x, A ^ {*} y) | ||
+ | $$ | ||
− | + | between the scalar products holds. This is a special case of the concept of an adjoint linear mapping. The transformation $ A ^ {*} $ | |
+ | is defined uniquely by $ A $. | ||
+ | If $ L $ | ||
+ | is finite-dimensional, then every $ A $ | ||
+ | has an adjoint $ A ^ {*} $, | ||
+ | the matrix $ {\mathcal B} $ | ||
+ | of which in a basis $ e _ {1} \dots e _ {n} $ | ||
+ | is related to the matrix $ {\mathcal A} $ | ||
+ | of $ A $ | ||
+ | in the same basis as follows: | ||
− | + | $$ | |
+ | {\mathcal B} = \overline{G}\; ^ {-1} {\mathcal A} ^ {*} \overline{G}\; , | ||
+ | $$ | ||
+ | where $ {\mathcal A} ^ {*} $ | ||
+ | is the matrix adjoint to $ {\mathcal A} $ | ||
+ | and $ G $ | ||
+ | is the [[Gram matrix|Gram matrix]] of the basis $ e _ {1} \dots e _ {n} $. | ||
+ | In a Euclidean space, $ A $ | ||
+ | and $ A ^ {*} $ | ||
+ | have the same characteristic polynomial, determinant, trace, and eigen values. In a unitary space, their characteristic polynomials, determinants, traces, and eigen values are [[complex conjugate]]s. | ||
====Comments==== | ====Comments==== | ||
− | More generally, the phrase "adjoint transformation" or "adjoint linear mappingadjoint linear mapping" is also used to signify the dual linear mapping | + | More generally, the phrase "adjoint transformation" or "adjoint linear mappingadjoint linear mapping" is also used to signify the dual linear mapping $ \phi ^ {*} : M ^ {*} \rightarrow L ^ {*} $ |
+ | of a linear mapping $ \phi : L \rightarrow M $. | ||
+ | Here $ M ^ {*} $ | ||
+ | is the space of (continuous) linear functionals on $ M $ | ||
+ | and $ \phi ^ {*} (m ^ {*} (l)) = m ^ {*} ( \phi (l)) $. | ||
+ | The imbeddings $ L \rightarrow L ^ {*} $, | ||
+ | $ M \rightarrow M ^ {*} $, | ||
+ | $ l \mapsto ( \cdot , l) $ | ||
+ | connect the two notions. Cf. also [[Adjoint operator|Adjoint operator]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Reed, B. Simon, "Methods of modern mathematical physics" , '''1. Functional analysis''' , Acad. Press (1972) pp. Sect. 2</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Reed, B. Simon, "Methods of modern mathematical physics" , '''1. Functional analysis''' , Acad. Press (1972) pp. Sect. 2</TD></TR></table> |
Latest revision as of 16:09, 1 April 2020
of a linear transformation $ A $
The linear transformation $ A ^ {*} $ on a Euclidean space (or unitary space) $ L $ such that for all $ x, y \in L $, the equality
$$ (Ax, y) = (x, A ^ {*} y) $$
between the scalar products holds. This is a special case of the concept of an adjoint linear mapping. The transformation $ A ^ {*} $ is defined uniquely by $ A $. If $ L $ is finite-dimensional, then every $ A $ has an adjoint $ A ^ {*} $, the matrix $ {\mathcal B} $ of which in a basis $ e _ {1} \dots e _ {n} $ is related to the matrix $ {\mathcal A} $ of $ A $ in the same basis as follows:
$$ {\mathcal B} = \overline{G}\; ^ {-1} {\mathcal A} ^ {*} \overline{G}\; , $$
where $ {\mathcal A} ^ {*} $ is the matrix adjoint to $ {\mathcal A} $ and $ G $ is the Gram matrix of the basis $ e _ {1} \dots e _ {n} $.
In a Euclidean space, $ A $ and $ A ^ {*} $ have the same characteristic polynomial, determinant, trace, and eigen values. In a unitary space, their characteristic polynomials, determinants, traces, and eigen values are complex conjugates.
Comments
More generally, the phrase "adjoint transformation" or "adjoint linear mappingadjoint linear mapping" is also used to signify the dual linear mapping $ \phi ^ {*} : M ^ {*} \rightarrow L ^ {*} $ of a linear mapping $ \phi : L \rightarrow M $. Here $ M ^ {*} $ is the space of (continuous) linear functionals on $ M $ and $ \phi ^ {*} (m ^ {*} (l)) = m ^ {*} ( \phi (l)) $. The imbeddings $ L \rightarrow L ^ {*} $, $ M \rightarrow M ^ {*} $, $ l \mapsto ( \cdot , l) $ connect the two notions. Cf. also Adjoint operator.
References
[a1] | M. Reed, B. Simon, "Methods of modern mathematical physics" , 1. Functional analysis , Acad. Press (1972) pp. Sect. 2 |
Adjoint linear transformation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Adjoint_linear_transformation&oldid=35199