Difference between revisions of "Universe"
(typo) |
m (link) |
||
Line 11: | Line 11: | ||
5) $(x,y) \in \mathcal{U}$ if and only if $x,y \in \mathcal{U}$. | 5) $(x,y) \in \mathcal{U}$ if and only if $x,y \in \mathcal{U}$. | ||
− | The existence of infinite universes in [[axiomatic set theory]] is equivalent to the existence of strongly inaccessible | + | The existence of infinite universes in [[axiomatic set theory]] is equivalent to the existence of strongly [[inaccessible cardinal]]s (cf. [[Cardinal number]]). A universe is a model for Zermelo–Fraenkel set theory. Universes were introduced by A. Grothendieck in the context of [[category]] theory in order to introduce the "set" of natural transformations of functors between ($\mathcal{U}$-) categories, and in order to admit other "large" category-theoretic constructions. |
====References==== | ====References==== |
Latest revision as of 18:30, 4 December 2017
A set $\mathcal{U}$ which is closed under the formation of unions, singletons, subelements, power sets, and pairs; more precisely:
1) $I \in \mathcal{U}$, $X_i \in \mathcal{U}$ implies $\cup_{i\in I}X_i \in \mathcal{U}$;
2) $x \in \mathcal{U}$ implies $\{x\} \in \mathcal{U}$;
3) $x \in X \in \mathcal{U}$ implies $x \in \mathcal{U}$;
4) $X \in \mathcal{U}$ implies $\mathcal{P}X \in \mathcal{U}$;
5) $(x,y) \in \mathcal{U}$ if and only if $x,y \in \mathcal{U}$.
The existence of infinite universes in axiomatic set theory is equivalent to the existence of strongly inaccessible cardinals (cf. Cardinal number). A universe is a model for Zermelo–Fraenkel set theory. Universes were introduced by A. Grothendieck in the context of category theory in order to introduce the "set" of natural transformations of functors between ($\mathcal{U}$-) categories, and in order to admit other "large" category-theoretic constructions.
References
[a1] | J. Barwise (ed.) , Handbook of mathematical logic , North-Holland (1977) ((especially the article of D.A. Martin on Descriptive set theory)) |
[a2] | P. Gabriel, "Des catégories abéliennes" Bull. Soc. Math. France , 90 (1962) pp. 323–448 |
[a3] | K. Kunen, "Set theory" , North-Holland (1980) |
Universe. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Universe&oldid=42051