Difference between revisions of "Delange theorem"
(Importing text file) |
m (typo) |
||
| (One intermediate revision by the same user not shown) | |||
| Line 1: | Line 1: | ||
| − | In 1961 H. Delange (see [[#References|[a1]]]) proved that a [[ | + | In 1961 H. Delange (see [[#References|[a1]]]) proved that a [[multiplicative arithmetic function]] $f : \mathbf{N} \rightarrow \mathbf{C}$ of modulus $|f| \le 1$ possesses a non-zero mean value |
| − | + | $$ | |
| − | + | M(f) = \lim_{x\rightarrow\infty} \frac{1}{x} \sum_{n\le x} f(n) | |
| − | + | $$ | |
if and only if: | if and only if: | ||
i) the Delange series | i) the Delange series | ||
| − | + | $$ | |
| − | + | S_1 = \sum_p \frac{1}{p}(f(p)-1) \,, | |
| − | + | $$ | |
extended over the primes, is convergent; and | extended over the primes, is convergent; and | ||
| − | ii) all the factors | + | ii) all the factors $\sum_{k=0}^\infty f(p^k) p^{-ks}$ of the [[Euler product]] of $\sum_n f(n) n^{-s}$ are non-zero. |
| − | Since | + | Since $|f| \le 1$, condition ii) is automatically true for every prime $p>2$. In [[#References|[a2]]] this theorem was sharpened. |
| − | An elegant proof of the implication "i) and ii) | + | An elegant proof of the implication "i) and ii) $\Rightarrow$ $M(f)$ exists" , using the Turán–Kubilius inequality, is due to A. Rényi [[#References|[a4]]]. |
| − | Using the continuity theorem for characteristic functions, for a real-valued [[ | + | Using the continuity theorem for characteristic functions, for a real-valued [[additive arithmetic function]] $f$ Delange's theorem permits one to deal with the problem of the existence of limit distributions |
| + | $$ | ||
| + | \Psi(x) = \lim_{N\rightarrow\infty} \frac{1}{N} \sharp\{ n \le N : f(n) \le x \} \ . | ||
| + | $$ | ||
| − | Important extensions of Delange's theorem are due to P.D.T.A. Elliott and H. Daboussi; these theorems give necessary and sufficient conditions for multiplicative functions | + | Important extensions of Delange's theorem are due to P.D.T.A. Elliott and H. Daboussi; these theorems give necessary and sufficient conditions for multiplicative functions $f$ with finite [[semi-norm]] |
| − | + | $$ | |
| − | + | \Vert f \Vert_q = \left({ \limsup_{x\rightarrow\infty} \frac{1}{x} \sum_{n \le x} |f(n)|^q }\right)^{1/q} | |
| − | + | $$ | |
| − | to possess a non-zero mean value (respectively, at least one non-zero Fourier coefficient | + | to possess a non-zero mean value (respectively, at least one non-zero Fourier coefficient $M(n\mapsto f(n) \exp(2\pi i a/r n)$). See [[Elliott–Daboussi theorem]]. See also [[Wirsing theorems]]. |
E.V. Novoselov's theory of integration for arithmetic functions (see [[#References|[a3]]]) also leads to many results on mean values of arithmetic functions. | E.V. Novoselov's theory of integration for arithmetic functions (see [[#References|[a3]]]) also leads to many results on mean values of arithmetic functions. | ||
====References==== | ====References==== | ||
| − | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Delange, "Sur les fonctions arithmétiques multiplicatives" ''Ann. Sci. Ecole Norm. Sup. (3)'' , '''78''' (1961) pp. 273–304</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H. Delange, "On a class of multiplicative functions" ''Scripta Math.'' , '''26''' (1963) pp. 121–141</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> E.V. Novoselov, "A new method in probabilistic number theory" ''Transl. Amer. Math. Soc.'' , '''52''' (1966) pp. 217–275 ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''28''' (1964) pp. 307–364</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A. Rényi, "A new proof of a theorem of Delange" ''Publ. Math. Debrecen'' , '''12''' (1965) pp. 323–329</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Delange, "Sur les fonctions arithmétiques multiplicatives" ''Ann. Sci. Ecole Norm. Sup. (3)'' , '''78''' (1961) pp. 273–304</TD></TR> | ||
| + | <TR><TD valign="top">[a2]</TD> <TD valign="top"> H. Delange, "On a class of multiplicative functions" ''Scripta Math.'' , '''26''' (1963) pp. 121–141</TD></TR> | ||
| + | <TR><TD valign="top">[a3]</TD> <TD valign="top"> E.V. Novoselov, "A new method in probabilistic number theory" ''Transl. Amer. Math. Soc.'' , '''52''' (1966) pp. 217–275 ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''28''' (1964) pp. 307–364</TD></TR> | ||
| + | <TR><TD valign="top">[a4]</TD> <TD valign="top"> A. Rényi, "A new proof of a theorem of Delange" ''Publ. Math. Debrecen'' , '''12''' (1965) pp. 323–329</TD></TR> | ||
| + | </table> | ||
| + | |||
| + | {{TEX|done}} | ||
Latest revision as of 11:03, 21 October 2017
In 1961 H. Delange (see [a1]) proved that a multiplicative arithmetic function $f : \mathbf{N} \rightarrow \mathbf{C}$ of modulus $|f| \le 1$ possesses a non-zero mean value $$ M(f) = \lim_{x\rightarrow\infty} \frac{1}{x} \sum_{n\le x} f(n) $$ if and only if:
i) the Delange series $$ S_1 = \sum_p \frac{1}{p}(f(p)-1) \,, $$ extended over the primes, is convergent; and
ii) all the factors $\sum_{k=0}^\infty f(p^k) p^{-ks}$ of the Euler product of $\sum_n f(n) n^{-s}$ are non-zero.
Since $|f| \le 1$, condition ii) is automatically true for every prime $p>2$. In [a2] this theorem was sharpened.
An elegant proof of the implication "i) and ii) $\Rightarrow$ $M(f)$ exists" , using the Turán–Kubilius inequality, is due to A. Rényi [a4].
Using the continuity theorem for characteristic functions, for a real-valued additive arithmetic function $f$ Delange's theorem permits one to deal with the problem of the existence of limit distributions $$ \Psi(x) = \lim_{N\rightarrow\infty} \frac{1}{N} \sharp\{ n \le N : f(n) \le x \} \ . $$
Important extensions of Delange's theorem are due to P.D.T.A. Elliott and H. Daboussi; these theorems give necessary and sufficient conditions for multiplicative functions $f$ with finite semi-norm $$ \Vert f \Vert_q = \left({ \limsup_{x\rightarrow\infty} \frac{1}{x} \sum_{n \le x} |f(n)|^q }\right)^{1/q} $$ to possess a non-zero mean value (respectively, at least one non-zero Fourier coefficient $M(n\mapsto f(n) \exp(2\pi i a/r n)$). See Elliott–Daboussi theorem. See also Wirsing theorems.
E.V. Novoselov's theory of integration for arithmetic functions (see [a3]) also leads to many results on mean values of arithmetic functions.
References
| [a1] | H. Delange, "Sur les fonctions arithmétiques multiplicatives" Ann. Sci. Ecole Norm. Sup. (3) , 78 (1961) pp. 273–304 |
| [a2] | H. Delange, "On a class of multiplicative functions" Scripta Math. , 26 (1963) pp. 121–141 |
| [a3] | E.V. Novoselov, "A new method in probabilistic number theory" Transl. Amer. Math. Soc. , 52 (1966) pp. 217–275 Izv. Akad. Nauk SSSR Ser. Mat. , 28 (1964) pp. 307–364 |
| [a4] | A. Rényi, "A new proof of a theorem of Delange" Publ. Math. Debrecen , 12 (1965) pp. 323–329 |
Delange theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Delange_theorem&oldid=18449