|
|
(4 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | An [[Extension of a field|extension of a field]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k0559601.png" /> of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k0559602.png" />, of the type | + | An [[extension of a field]] $k$ of characteristic $p \ge 0$, of the type |
| + | \begin{equation}\label{eq:1} |
| + | K = k(a_1^{1/n},\ldots,a_t^{1/n}) |
| + | \end{equation} |
| + | where $a_1,\ldots,a_t \in k$, $n$ is some natural number, and it is assumed that $k$ contains a primitive $n$-th root of unity $\zeta_n$ (in particular, if $p \ne 0$ then $n$ is prime to $p$). Kummer extensions are named after E. Kummer, who first studied extensions of the type $\mathbf{Q}(\zeta_n,a^{1/n})$, where $\mathbf{Q}$ is the field of rational numbers and $a \in \mathbf{Q}$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k0559603.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
| + | The main result of the theory of Kummer extensions is that if the field $k$ contains a primitive root $\zeta_n$, then a finite extension $K/k$ is Kummer (for a given $n$) if and only if $K/k$ is a normal [[Abelian extension]] and the Galois group $\mathrm{Gal}(K/k)$ is annihilated by $n$. Any Kummer extension of a field $k$ is completely determined by its ''Kummer group'' $A(K/k) = B/k^*$, where $k^*$ is the multiplicative group of $k$ and |
− | | + | $$ |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k0559604.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k0559605.png" /> is some natural number, and it is assumed that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k0559606.png" /> contains a primitive <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k0559607.png" />-th root of unity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k0559608.png" /> (in particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k0559609.png" /> is prime to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596010.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596011.png" />). Kummer extensions are named after E. Kummer, who first studied extensions of the type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596012.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596013.png" /> is the field of rational numbers and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596014.png" />.
| + | B = \{ x \in K^* : x^n \in k^* \} \ . |
− | | + | $$ |
− | The main result of the theory of Kummer extensions is that if the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596015.png" /> contains a primitive root <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596016.png" />, then a finite extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596017.png" /> is Kummer (for a given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596018.png" />) if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596019.png" /> is a normal Abelian extension and the Galois group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596020.png" /> is annihilated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596021.png" />. Any Kummer extension of a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596022.png" /> is completely determined by its Kummer group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596023.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596024.png" /> is the multiplicative group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596025.png" /> and | |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596026.png" /></td> </tr></table>
| |
| | | |
| There exists a non-degenerate Kummer pairing, i.e. a mapping | | There exists a non-degenerate Kummer pairing, i.e. a mapping |
| + | $$ |
| + | \mathrm{Gal}(K/k) \times A(K/k) \rightarrow \mu(n) |
| + | $$ |
| + | where $\mu(n)$ is the subgroup of $k^*$ generated by $\zeta_n$. If $\sigma \in \mathrm{Gal}(K/k)$ and $a \in A(K/k$, the pairing is defined by the formula $(\sigma,a) = (a^{1/n})^{\sigma-1}$, where $a \in k$, and $a^{1/n} \in B$ is some representative of the element $a$. The pairing defines a canonical isomorphism. |
| + | \begin{equation}\label{eq:2} |
| + | \mathrm{Gal}(K/k) \stackrel{\phi}{\cong} \mathrm{Hom}(A(K/k),\mu(n) |
| + | \end{equation} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596027.png" /></td> </tr></table>
| + | In other words, any automorphism $\sigma \in \mathrm{Gal}(K/k)$ is defined by its action on the roots $a_i^{1/n}$ in \eqref{eq:1}, and this action may be arbitrary, provided that the roots $a_i^{1/n}$ are independent. In particular, if $\mathrm{Gal}(K/k)$ is a cyclic group, then $K = k(a^{1/n})$, where $a \in k^*$. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596028.png" /> is the subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596029.png" /> generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596030.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596032.png" />, the pairing is defined by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596033.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596034.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596035.png" /> is some representative of the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596036.png" />. The pairing defines a canonical isomorphism.
| + | Let $k$ be a [[normal extension]] of a field $k_0$ and let $K/k$ be a Kummer extension. Then the field $K$ is normal over $k_0$ if and only if $A(K/k$ is mapped into itself by $\mathrm{Gal}(k/k_0)$. In that case the isomorphism \eqref{eq:2} is a $\mathrm{Gal}(k/k_0)$-isomorphism, i.e. if $\tau \in \mathrm{Gal}(k/k_0)$, $\sigma \in \mathrm{Gal}(K/k)$ and if |
| + | $$ |
| + | \phi(\sigma) = \chi : A(K/k) \rightarrow \mu(n) |
| + | $$ |
| + | then $\phi(\sigma^\tau) = \tau\chi$, where $\tau\chi(a) = \tau(\chi(\tau^{-1}(a)))$. (The group $\mathrm{Gal}(k/k_0)$ acts on $\mathrm{Gal}(K/k)$ via conjugation in $\mathrm{Gal}(K/k_0)$.) By the above proposition, many problems concerning Abelian extensions of exponent $n$ of a field $k$ can be reduced to the theory of Kummer extensions even if $\zeta_n \not\in k$. To be precise: If $K/k$ is such an extension, then $K(\zeta_n)/k(\zeta_n)$ is a Kummer extension, and its Kummer group is characterized by the condition: If $\tau \in \mathrm{Gal}(k(\zeta_n)/k)$ and $a \in A(K(\zeta_n)/k(\zeta_n))$, then $\tau(a) = a^i$, where $i$ is a natural number which is defined modulo $n$ by the condition $\tau(\zeta_n) = \zeta_n^i$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596037.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
| + | The main results concerning Kummer extensions may be derived as corollaries of the [[Hilbert theorem]] on cyclic extensions, according to which the one-dimensional [[Galois cohomology]] group $H^1(\mathrm{Gal}(K/k), K^*)$ is trivial. |
| | | |
− | In other words, any automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596038.png" /> is defined by its action on the roots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596039.png" /> in (1), and this action may be arbitrary, provided that the roots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596040.png" /> are independent. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596041.png" /> is a cyclic group, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596042.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596043.png" />.
| + | The theory of Kummer extensions carries over to the case of infinite Abelian extensions of exponent $n$. When this is done, the Kummer pairing establishes a [[Pontryagin duality]] between the profinite group $\mathrm{Gal}(K/k)$ (endowed with the [[Krull topology]]) and the discrete group $A(K/k)$ (see [[#References|[1]]], [[#References|[2]]]). |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596044.png" /> be a [[Normal extension|normal extension]] of a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596045.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596046.png" /> be a Kummer extension. Then the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596047.png" /> is normal over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596048.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596049.png" /> is mapped into itself by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596050.png" />. In that case the isomorphism (2) is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596051.png" />-isomorphism, i.e. if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596052.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596053.png" /> and if
| + | The theory of Kummer extensions, also known as Kummer theory, has an analogue in the case of extensions \eqref{eq:1} with $n=p$ (cf. the [[Artin–Schreier theorem]]). The role of the group $\mu(n)$ in that situation is played by the additive group of the prime subfield $\mathbf{F}_p$ of $k$. The main result of the theory is: Any Abelian extension $K$ of exponent $p$ of a field $k$ is of the form $k(\beta_1,\ldots,\beta_t)$, where $\beta_1,\ldots,\beta_t$ are roots of equations of the type $x^p -x = a$ (see [[#References|[1]]]). There is also a generalization of this theory, due to E. Witt, to the case $n=p^s$, where $s>1$, using [[Witt vector]]s. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596054.png" /></td> </tr></table>
| + | Finally, an attempt has been made to construct a non-Abelian "Kummer theory" [[#References|[3]]], where the multiplicative group of the field is replaced by the matrix group $\mathrm{GL}(n,k)$. |
− | | |
− | then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596055.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596056.png" />. (The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596057.png" /> acts on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596058.png" /> via conjugation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596059.png" />.) By the above proposition, many problems concerning Abelian extensions of exponent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596060.png" /> of a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596061.png" /> can be reduced to the theory of Kummer extensions even if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596062.png" />. To be precise: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596063.png" /> is such an extension, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596064.png" /> is a Kummer extension, and its Kummer group is characterized by the condition: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596065.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596066.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596067.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596068.png" /> is a natural number which is defined modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596069.png" /> by the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596070.png" />.
| |
− | | |
− | The main results concerning Kummer extensions may be derived as corollaries of the [[Hilbert theorem|Hilbert theorem]] on cyclic extensions, according to which the one-dimensional [[Galois cohomology|Galois cohomology]] group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596071.png" /> is trivial.
| |
− | | |
− | The theory of Kummer extensions carries over to the case of infinite Abelian extensions of exponent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596072.png" />. When this is done, the Kummer pairing establishes a [[Pontryagin duality|Pontryagin duality]] between the profinite group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596073.png" /> (endowed with the Krull topology) and the discrete group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596074.png" /> (see [[#References|[1]]], [[#References|[2]]]).
| |
− | | |
− | The theory of Kummer extensions, also known as Kummer theory, has an analogue in the case of extensions (1) with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596075.png" /> (Artin–Schreier theory). The role of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596076.png" /> in that situation is played by the additive group of the prime subfield <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596077.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596078.png" />. The main result of the theory is: Any Abelian extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596079.png" /> of exponent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596080.png" /> of a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596081.png" /> is of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596082.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596083.png" /> are roots of equations of the type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596084.png" /> (see [[#References|[1]]]). There is also a generalization of this theory, due to E. Witt, to the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596085.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596086.png" />, using Witt vectors (cf. [[Witt vector|Witt vector]]).
| |
− | | |
− | Finally, an attempt has been made to construct a non-Abelian "Kummer theory" [[#References|[3]]], where the multiplicative group of the field is replaced by the matrix group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055960/k05596087.png" />. | |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1974)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.W.S. Cassels (ed.) A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press (1968)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Takahashi, "Generation of Galois extensions by matrix roots" ''J. Math. Soc. Japan'' , '''20''' : 1–2 (1968) pp. 365–370</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1974) {{MR|0783636}} {{ZBL|0712.00001}} </TD></TR> |
| + | <TR><TD valign="top">[2]</TD> <TD valign="top"> J.W.S. Cassels (ed.) A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press (1968) {{MR|0911121}} {{MR|0255512}} {{MR|0215665}} {{ZBL|0645.12001}} {{ZBL|0153.07403}} </TD></TR> |
| + | <TR><TD valign="top">[3]</TD> <TD valign="top"> S. Takahashi, "Generation of Galois extensions by matrix roots" ''J. Math. Soc. Japan'' , '''20''' : 1–2 (1968) pp. 365–370 {{MR|0224596}} {{ZBL|0182.07503}} </TD></TR> |
| + | </table> |
| | | |
| | | |
Line 42: |
Line 48: |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Neukirch, "Class field theory" , Springer (1986) pp. Chapt. 4, §4</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Neukirch, "Class field theory" , Springer (1986) pp. Chapt. 4, §4 {{MR|0819231}} {{ZBL|0587.12001}} </TD></TR> |
| + | </table> |
| + | |
| + | {{TEX|done}} |
An extension of a field $k$ of characteristic $p \ge 0$, of the type
\begin{equation}\label{eq:1}
K = k(a_1^{1/n},\ldots,a_t^{1/n})
\end{equation}
where $a_1,\ldots,a_t \in k$, $n$ is some natural number, and it is assumed that $k$ contains a primitive $n$-th root of unity $\zeta_n$ (in particular, if $p \ne 0$ then $n$ is prime to $p$). Kummer extensions are named after E. Kummer, who first studied extensions of the type $\mathbf{Q}(\zeta_n,a^{1/n})$, where $\mathbf{Q}$ is the field of rational numbers and $a \in \mathbf{Q}$.
The main result of the theory of Kummer extensions is that if the field $k$ contains a primitive root $\zeta_n$, then a finite extension $K/k$ is Kummer (for a given $n$) if and only if $K/k$ is a normal Abelian extension and the Galois group $\mathrm{Gal}(K/k)$ is annihilated by $n$. Any Kummer extension of a field $k$ is completely determined by its Kummer group $A(K/k) = B/k^*$, where $k^*$ is the multiplicative group of $k$ and
$$
B = \{ x \in K^* : x^n \in k^* \} \ .
$$
There exists a non-degenerate Kummer pairing, i.e. a mapping
$$
\mathrm{Gal}(K/k) \times A(K/k) \rightarrow \mu(n)
$$
where $\mu(n)$ is the subgroup of $k^*$ generated by $\zeta_n$. If $\sigma \in \mathrm{Gal}(K/k)$ and $a \in A(K/k$, the pairing is defined by the formula $(\sigma,a) = (a^{1/n})^{\sigma-1}$, where $a \in k$, and $a^{1/n} \in B$ is some representative of the element $a$. The pairing defines a canonical isomorphism.
\begin{equation}\label{eq:2}
\mathrm{Gal}(K/k) \stackrel{\phi}{\cong} \mathrm{Hom}(A(K/k),\mu(n)
\end{equation}
In other words, any automorphism $\sigma \in \mathrm{Gal}(K/k)$ is defined by its action on the roots $a_i^{1/n}$ in \eqref{eq:1}, and this action may be arbitrary, provided that the roots $a_i^{1/n}$ are independent. In particular, if $\mathrm{Gal}(K/k)$ is a cyclic group, then $K = k(a^{1/n})$, where $a \in k^*$.
Let $k$ be a normal extension of a field $k_0$ and let $K/k$ be a Kummer extension. Then the field $K$ is normal over $k_0$ if and only if $A(K/k$ is mapped into itself by $\mathrm{Gal}(k/k_0)$. In that case the isomorphism \eqref{eq:2} is a $\mathrm{Gal}(k/k_0)$-isomorphism, i.e. if $\tau \in \mathrm{Gal}(k/k_0)$, $\sigma \in \mathrm{Gal}(K/k)$ and if
$$
\phi(\sigma) = \chi : A(K/k) \rightarrow \mu(n)
$$
then $\phi(\sigma^\tau) = \tau\chi$, where $\tau\chi(a) = \tau(\chi(\tau^{-1}(a)))$. (The group $\mathrm{Gal}(k/k_0)$ acts on $\mathrm{Gal}(K/k)$ via conjugation in $\mathrm{Gal}(K/k_0)$.) By the above proposition, many problems concerning Abelian extensions of exponent $n$ of a field $k$ can be reduced to the theory of Kummer extensions even if $\zeta_n \not\in k$. To be precise: If $K/k$ is such an extension, then $K(\zeta_n)/k(\zeta_n)$ is a Kummer extension, and its Kummer group is characterized by the condition: If $\tau \in \mathrm{Gal}(k(\zeta_n)/k)$ and $a \in A(K(\zeta_n)/k(\zeta_n))$, then $\tau(a) = a^i$, where $i$ is a natural number which is defined modulo $n$ by the condition $\tau(\zeta_n) = \zeta_n^i$.
The main results concerning Kummer extensions may be derived as corollaries of the Hilbert theorem on cyclic extensions, according to which the one-dimensional Galois cohomology group $H^1(\mathrm{Gal}(K/k), K^*)$ is trivial.
The theory of Kummer extensions carries over to the case of infinite Abelian extensions of exponent $n$. When this is done, the Kummer pairing establishes a Pontryagin duality between the profinite group $\mathrm{Gal}(K/k)$ (endowed with the Krull topology) and the discrete group $A(K/k)$ (see [1], [2]).
The theory of Kummer extensions, also known as Kummer theory, has an analogue in the case of extensions \eqref{eq:1} with $n=p$ (cf. the Artin–Schreier theorem). The role of the group $\mu(n)$ in that situation is played by the additive group of the prime subfield $\mathbf{F}_p$ of $k$. The main result of the theory is: Any Abelian extension $K$ of exponent $p$ of a field $k$ is of the form $k(\beta_1,\ldots,\beta_t)$, where $\beta_1,\ldots,\beta_t$ are roots of equations of the type $x^p -x = a$ (see [1]). There is also a generalization of this theory, due to E. Witt, to the case $n=p^s$, where $s>1$, using Witt vectors.
Finally, an attempt has been made to construct a non-Abelian "Kummer theory" [3], where the multiplicative group of the field is replaced by the matrix group $\mathrm{GL}(n,k)$.
References
The theory of Kummer extensions fits, of course, in the general framework of class field theory, cf. [a1] for details.
References