Namespaces
Variants
Actions

Difference between revisions of "Convergence in probability"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX done)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
Convergence of a sequence of random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026080/c0260801.png" /> defined on a probability space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026080/c0260802.png" />, to a random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026080/c0260803.png" />, defined in the following way: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026080/c0260804.png" /> if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026080/c0260805.png" />,
+
{{MSC|60-01|28A20}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026080/c0260806.png" /></td> </tr></table>
+
Convergence of a sequence of [[random variable]]s $X_1,X_2,\ldots$ defined on a [[probability space]] $(\Omega,\mathcal{F},\mathbb{P})$, to a random variable $X$, defined in the following way: $X_n \stackrel{\mathrm{P}}{\rightarrow} X$ if for any $\epsilon > 0$,
 +
$$
 +
\mathbb{P}\{ |X_n-X| > \epsilon \} \rightarrow 0 \ \ \text{as}\ \ n \rightarrow \infty \ .
 +
$$
  
In mathematical analysis, this form of convergence is called convergence in measure. [[Convergence in distribution|Convergence in distribution]] follows from convergence in probability.
+
In mathematical analysis, this form of convergence is called [[convergence in measure]].   Convergence in probability implies [[convergence in distribution]].
  
  
  
 
====Comments====
 
====Comments====
See also [[Weak convergence of probability measures|Weak convergence of probability measures]]; [[Convergence, types of|Convergence, types of]]; [[Distributions, convergence of|Distributions, convergence of]].
+
See also [[Weak convergence of probability measures]]; [[Convergence, types of]]; [[Distributions, convergence of]].
 +
 
 +
{{TEX|done}}

Latest revision as of 19:30, 1 September 2017

2020 Mathematics Subject Classification: Primary: 60-01 Secondary: 28A20 [MSN][ZBL]

Convergence of a sequence of random variables $X_1,X_2,\ldots$ defined on a probability space $(\Omega,\mathcal{F},\mathbb{P})$, to a random variable $X$, defined in the following way: $X_n \stackrel{\mathrm{P}}{\rightarrow} X$ if for any $\epsilon > 0$, $$ \mathbb{P}\{ |X_n-X| > \epsilon \} \rightarrow 0 \ \ \text{as}\ \ n \rightarrow \infty \ . $$

In mathematical analysis, this form of convergence is called convergence in measure. Convergence in probability implies convergence in distribution.


Comments

See also Weak convergence of probability measures; Convergence, types of; Distributions, convergence of.

How to Cite This Entry:
Convergence in probability. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Convergence_in_probability&oldid=15590
This article was adapted from an original article by V.I. Bityutskov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article