Difference between revisions of "Pointwise convergence"
(extend to generalised sequences) |
(Removed duplication of Pointwise convergence, topology of) |
||
Line 4: | Line 4: | ||
An important subclass of the pointwise-convergent sequences for the case of mappings between metric spaces (or, more generally, uniform spaces) is that of the uniformly-convergent sequences (cf. [[Uniform convergence]]). | An important subclass of the pointwise-convergent sequences for the case of mappings between metric spaces (or, more generally, uniform spaces) is that of the uniformly-convergent sequences (cf. [[Uniform convergence]]). | ||
− | + | See also [[Pointwise convergence, topology of]]. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Revision as of 17:35, 31 December 2016
A type of convergence of sequences of functions (mappings). Let $f_n : X \rightarrow Y$, $n=1,2,\ldots$ where $X$ is some set and $Y$ is a topological space; then pointwise convergence means that for any element $x \in X$ the sequence of values $y_n = f_n(x)$, $n=1,2,\ldots$ converges in the space $Y$. The function $f : x \mapsto \lim_n y_n$ is then the pointwise limit of the sequence $(f_n)$. The definition extends to generalized sequences of functions and their values.
An important subclass of the pointwise-convergent sequences for the case of mappings between metric spaces (or, more generally, uniform spaces) is that of the uniformly-convergent sequences (cf. Uniform convergence).
See also Pointwise convergence, topology of.
Pointwise convergence. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pointwise_convergence&oldid=40129