Difference between revisions of "Grothendieck category"
(Importing text file) |
(Tex done) |
||
Line 1: | Line 1: | ||
− | An [[ | + | An [[Abelian category]] with a set of generators (cf. [[Generator of a category]]) and satisfying the following axiom: There exist [[coproduct]]s (sums) of arbitrary families of objects, and for each directed family of subobjects $U_i$, $i \in I$, of an object $A$, and any subobject $V$, the following equality holds: |
+ | $$ | ||
+ | \left({ \bigcup_{i \in I} U_i }\right) \cap V = \bigcup_{i \in I} \left({ U_i \cap V }\right) | ||
+ | $$ | ||
− | + | The [[Modules, category of|category of modules]] (left or right) over an arbitrary [[Associative rings and algebras|associative ring]] $R$ with an [[Ring with identity|identity element]] and the category of sheaves of $R$-modules over an arbitrary topological space (cf. [[Sheaf theory]]) are Grothendieck categories. A full subcategory $\mathfrak{S}$ of the category ${}_R \mathfrak{M}$ of left $R$-modules is known as a ''localizing subcategory'' if it is closed with respect to [[colimit]]s and if, in an exact sequence | |
+ | $$ | ||
+ | 0 \rightarrow A' \rightarrow A \rightarrow A''' \rightarrow 0 | ||
+ | $$ | ||
+ | the object $A$ belongs to $\mathfrak{S}$ if and only if both $A'$ and $A''$ belong to $\mathfrak{S}$. Each localizing subcategory makes it possible to construct the quotient category ${}_R \mathfrak{M} / \mathfrak{S}$. An Abelian category is a Grothendieck category if and only if it is equivalent to some quotient category of the type ${}_R \mathfrak{M} / \mathfrak{S}$. | ||
− | + | In a Grothendieck category each object has an [[injective envelope]], and for this reason Grothendieck categories are well suited for use in homological applications. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | In a Grothendieck category each object has an injective envelope, and for this reason Grothendieck categories are well suited for use in homological applications. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Grothendieck, "Sur quelques points d'algèbre homologique" ''Tôhoku Math. J. (2)'' , '''9''' (1957) pp. 119–221</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I. Bucur, A. Deleanu, "Introduction to the theory of categories and functors" , Wiley (1968)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> N. [N. Popescu] Popesco, P. Gabriel, "Charactérisation des catégories abéliennes avec générateurs et limites inductives exactes" ''C.R. Acad. Sci.'' , '''258''' (1964) pp. 4188–4190</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> A. Grothendieck, "Sur quelques points d'algèbre homologique" ''Tôhoku Math. J. (2)'' , '''9''' (1957) pp. 119–221</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> I. Bucur, A. Deleanu, "Introduction to the theory of categories and functors" , Wiley (1968)</TD></TR> | ||
+ | <TR><TD valign="top">[3]</TD> <TD valign="top"> N. [N. Popescu] Popesco, P. Gabriel, "Charactérisation des catégories abéliennes avec générateurs et limites inductives exactes" ''C.R. Acad. Sci.'' , '''258''' (1964) pp. 4188–4190</TD></TR> | ||
+ | </table> | ||
Line 20: | Line 25: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Popescu, "Abelian categories with applications to rings and modules" , Acad. Press (1973)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Popescu, "Abelian categories with applications to rings and modules" , Acad. Press (1973)</TD></TR> | ||
+ | </table> | ||
+ | |||
+ | {{TEX|done}} |
Latest revision as of 19:42, 30 October 2016
An Abelian category with a set of generators (cf. Generator of a category) and satisfying the following axiom: There exist coproducts (sums) of arbitrary families of objects, and for each directed family of subobjects $U_i$, $i \in I$, of an object $A$, and any subobject $V$, the following equality holds: $$ \left({ \bigcup_{i \in I} U_i }\right) \cap V = \bigcup_{i \in I} \left({ U_i \cap V }\right) $$
The category of modules (left or right) over an arbitrary associative ring $R$ with an identity element and the category of sheaves of $R$-modules over an arbitrary topological space (cf. Sheaf theory) are Grothendieck categories. A full subcategory $\mathfrak{S}$ of the category ${}_R \mathfrak{M}$ of left $R$-modules is known as a localizing subcategory if it is closed with respect to colimits and if, in an exact sequence $$ 0 \rightarrow A' \rightarrow A \rightarrow A''' \rightarrow 0 $$ the object $A$ belongs to $\mathfrak{S}$ if and only if both $A'$ and $A''$ belong to $\mathfrak{S}$. Each localizing subcategory makes it possible to construct the quotient category ${}_R \mathfrak{M} / \mathfrak{S}$. An Abelian category is a Grothendieck category if and only if it is equivalent to some quotient category of the type ${}_R \mathfrak{M} / \mathfrak{S}$.
In a Grothendieck category each object has an injective envelope, and for this reason Grothendieck categories are well suited for use in homological applications.
References
[1] | A. Grothendieck, "Sur quelques points d'algèbre homologique" Tôhoku Math. J. (2) , 9 (1957) pp. 119–221 |
[2] | I. Bucur, A. Deleanu, "Introduction to the theory of categories and functors" , Wiley (1968) |
[3] | N. [N. Popescu] Popesco, P. Gabriel, "Charactérisation des catégories abéliennes avec générateurs et limites inductives exactes" C.R. Acad. Sci. , 258 (1964) pp. 4188–4190 |
Comments
References
[a1] | N. Popescu, "Abelian categories with applications to rings and modules" , Acad. Press (1973) |
Grothendieck category. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Grothendieck_category&oldid=14714