|
|
(5 intermediate revisions by 4 users not shown) |
Line 1: |
Line 1: |
− | The tangent cone to a convex surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t0921201.png" /> at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t0921202.png" /> is the surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t0921203.png" /> of the cone formed by the half-lines emanating from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t0921204.png" /> and intersecting the [[Convex body|convex body]] bounded by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t0921205.png" /> in at least one point distinct from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t0921206.png" />. (This cone itself is sometimes called the solid tangent cone.) In other words, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t0921207.png" /> is the boundary of the intersection of all half-spaces containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t0921208.png" /> and defined by the supporting planes to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t0921209.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212010.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212011.png" /> is a plane, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212012.png" /> is called a smooth point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212013.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212014.png" /> is a dihedral angle, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212015.png" /> is called a ridge point; finally, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212016.png" /> is a non-degenerate (convex) cone, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212017.png" /> is called a conic point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212018.png" />.
| + | {{TEX|done}} |
| | | |
− | ====References==== | + | ====Tangent cone to a convex surface (by M.I. Voitsekhovskii)==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.V. Pogorelov, "Extrinsic geometry of convex surfaces" , Amer. Math. Soc. (1972) (Translated from Russian)</TD></TR></table>
| + | |
| + | The tangent cone to a [[convex surface]] $S$ at a point $O$ is the surface $V(O)$ of the cone formed by the [[Half-line (ray)|half-lines]] emanating from $O$ and intersecting the [[convex body]] bounded by $S$ in at least one point distinct from $O$. (This cone itself is sometimes called the solid tangent cone.) In other words, $V(O)$ is the boundary of the intersection of all half-spaces containing $S$ and defined by the [[Supporting hyperplane|supporting planes]] to $S$ at $O$. If $V(O)$ is a plane, then $O$ is called a smooth point of $S$; if $V(O)$ is a [[dihedral angle]], $O$ is called a ridge point; finally, if $V(O)$ is a non-degenerate [[convex cone]], $O$ is called a conic point of $S$. |
| | | |
| | | |
| | | |
− | ====Comments==== | + | ====Tangent cone to an algebraic variety (by V.I. Danilov)==== |
| | | |
| + | The tangent cone to an [[algebraic variety]] $X$ at a point $x$ is the set of limiting positions of the [[secant]]s passing through $x$. More precisely, if the algebraic variety $X$ is imbedded in an [[affine space]] $A^n$ and if it is defined by an ideal $\mathfrak{A}$ of the ring $k[T_1,\ldots,T_n]$ so that $x\in X$ has coordinates $(0,\ldots,0)$, then the tangent cone $C(X,x)$ to $X$ at $x$ is given by the ideal of initial forms of the [[polynomial]]s in $\mathfrak{A}$. (If $F = F_k + F_{k+1} + \cdots$ is the expansion of $F$ in homogeneous polynomials and $F_k \ne 0$, then $F_k$ is called the initial form of $F$.) There is another definition, suitable for [[Noetherian scheme]]s (see [[#References|[1]]]): Let $O_{X,x}$ be the [[local ring]] of a [[scheme]] $X$ at the point $x$, and let $\mathfrak{M}$ be its maximal ideal. Then the spectrum of the graded ring |
| | | |
− | ====References====
| + | $$ \bigoplus_{n\ge 0} (\mathfrak{M}^n / \mathfrak{M}^{n+1}) $$ |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Schneider, "Boundary structure and curvature of convex bodies" J. Tölke (ed.) J.M. Wills (ed.) , ''Contributions to geometry'' , Birkhäuser (1979) pp. 13–59</TD></TR></table>
| |
| | | |
− | The tangent cone to an algebraic variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212019.png" /> at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212020.png" /> is the set of limiting positions of the secants passing through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212021.png" />. More precisely, if the algebraic variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212022.png" /> is imbedded in an affine space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212023.png" /> and if it is defined by an ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212024.png" /> of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212025.png" /> so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212026.png" /> has coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212027.png" />, then the tangent cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212028.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212029.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212030.png" /> is given by the ideal of initial forms of the polynomials in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212031.png" />. (If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212032.png" /> is the expansion of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212033.png" /> in homogeneous polynomials and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212034.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212035.png" /> is called the initial form of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212036.png" />.) There is another definition, suitable for Noetherian schemes (see [[#References|[1]]]): Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212037.png" /> be the [[Local ring|local ring]] of a [[Scheme|scheme]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212038.png" /> at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212039.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212040.png" /> be its maximal ideal. Then the spectrum of the graded ring
| + | is called the tangent cone to $X$ at the point $x$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212041.png" /></td> </tr></table>
| + | In a neighbourhood of a point $x$ the variety $X$ is, in a certain sense, structured in the same way as the tangent cone. For example, if the tangent cone is reduced, normal or regular, then so is the local ring $\mathcal{O}_{X,x}$. The dimension and multiplicity of $X$ at $x$ are the same as the dimension of the tangent cone and the multiplicity at its vertex. The tangent cone coincides with the [[Zariski tangent space]] if and only if $x$ is a non-singular point of $X$. A [[morphism]] of varieties induces a mapping of the tangent cones. |
| | | |
− | is called the tangent cone to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212042.png" /> at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212043.png" />.
| |
| | | |
− | In a neighbourhood of a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212044.png" /> the variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212045.png" /> is, in a certain sense, structured in the same way as the tangent cone. For example, if the tangent cone is reduced, normal or regular, then so is the local ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212046.png" />. The dimension and multiplicity of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212047.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212048.png" /> are the same as the dimension of the tangent cone and the multiplicity at its vertex. The tangent cone coincides with the [[Zariski tangent space|Zariski tangent space]] if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212049.png" /> is a non-singular point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092120/t09212050.png" />. A morphism of varieties induces a mapping of the tangent cones.
| |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.-i. Igusa, "Normal point and tangent cone of an algebraic variety" ''Mem. Coll. Sci. Univ. Kyoto'' , '''27''' (1952) pp. 189–201</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P. Samuel, "Méthodes d'algèbre abstraite en géométrie algébrique" , Springer (1967)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J. Hironaka, "Resolution of singularities of an algebraic variety over a field of characteristic zero I, II" ''Ann. of Math.'' , '''79''' (1964) pp. 109–203; 205–326</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> H. Whitney, "Local properties of analytic varieties" S.S. Cairns (ed.) , ''Differential and Combinatorial Topol. (Symp. in honor of M. Morse)'' , Princeton Univ. Press (1965) pp. 205–244</TD></TR></table>
| |
| | | |
− | ''V.I. Danilov'' | + | <table> |
− | | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> J.-i. Igusa, "Normal point and tangent cone of an algebraic variety" ''Mem. Coll. Sci. Univ. Kyoto'' , '''27''' (1952) pp. 189–201 {{MR|0052155}} {{ZBL|0101.38501}} {{ZBL|0049.38504}} </TD></TR> |
− | ====Comments====
| + | <TR><TD valign="top">[2]</TD> <TD valign="top"> P. Samuel, "Méthodes d'algèbre abstraite en géométrie algébrique" , Springer (1967) {{MR|0213347}} {{ZBL|}} </TD></TR> |
− | | + | <TR><TD valign="top">[3]</TD> <TD valign="top"> J. Hironaka, "Resolution of singularities of an algebraic variety over a field of characteristic zero I, II" ''Ann. of Math.'' , '''79''' (1964) pp. 109–203; 205–326 {{MR|0199184}} {{ZBL|0122.38603}} </TD></TR> |
− | | + | <TR><TD valign="top">[4]</TD> <TD valign="top"> H. Whitney, "Local properties of analytic varieties" S.S. Cairns (ed.) , ''Differential and Combinatorial Topol. (Symp. in honor of M. Morse)'' , Princeton Univ. Press (1965) pp. 205–244 {{MR|0188486}} {{ZBL|0129.39402}} </TD></TR> |
− | ====References==== | + | <TR><TD valign="top">[5]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR> |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian)</TD></TR></table> | + | <TR><TD valign="top">[6]</TD> <TD valign="top"> A.V. Pogorelov, "Extrinsic geometry of convex surfaces" , Amer. Math. Soc. (1972) (Translated from Russian) {{MR|0346714}} {{MR|0244909}} {{ZBL|0311.53067}} </TD></TR> |
| + | <TR><TD valign="top">[7]</TD> <TD valign="top"> R. Schneider, "Boundary structure and curvature of convex bodies" J. Tölke (ed.) J.M. Wills (ed.) , ''Contributions to geometry'' , Birkhäuser (1979) pp. 13–59 {{MR|0568493}} {{ZBL|0427.52003}} </TD></TR> |
| + | </table> |
Tangent cone to a convex surface (by M.I. Voitsekhovskii)
The tangent cone to a convex surface $S$ at a point $O$ is the surface $V(O)$ of the cone formed by the half-lines emanating from $O$ and intersecting the convex body bounded by $S$ in at least one point distinct from $O$. (This cone itself is sometimes called the solid tangent cone.) In other words, $V(O)$ is the boundary of the intersection of all half-spaces containing $S$ and defined by the supporting planes to $S$ at $O$. If $V(O)$ is a plane, then $O$ is called a smooth point of $S$; if $V(O)$ is a dihedral angle, $O$ is called a ridge point; finally, if $V(O)$ is a non-degenerate convex cone, $O$ is called a conic point of $S$.
Tangent cone to an algebraic variety (by V.I. Danilov)
The tangent cone to an algebraic variety $X$ at a point $x$ is the set of limiting positions of the secants passing through $x$. More precisely, if the algebraic variety $X$ is imbedded in an affine space $A^n$ and if it is defined by an ideal $\mathfrak{A}$ of the ring $k[T_1,\ldots,T_n]$ so that $x\in X$ has coordinates $(0,\ldots,0)$, then the tangent cone $C(X,x)$ to $X$ at $x$ is given by the ideal of initial forms of the polynomials in $\mathfrak{A}$. (If $F = F_k + F_{k+1} + \cdots$ is the expansion of $F$ in homogeneous polynomials and $F_k \ne 0$, then $F_k$ is called the initial form of $F$.) There is another definition, suitable for Noetherian schemes (see [1]): Let $O_{X,x}$ be the local ring of a scheme $X$ at the point $x$, and let $\mathfrak{M}$ be its maximal ideal. Then the spectrum of the graded ring
$$ \bigoplus_{n\ge 0} (\mathfrak{M}^n / \mathfrak{M}^{n+1}) $$
is called the tangent cone to $X$ at the point $x$.
In a neighbourhood of a point $x$ the variety $X$ is, in a certain sense, structured in the same way as the tangent cone. For example, if the tangent cone is reduced, normal or regular, then so is the local ring $\mathcal{O}_{X,x}$. The dimension and multiplicity of $X$ at $x$ are the same as the dimension of the tangent cone and the multiplicity at its vertex. The tangent cone coincides with the Zariski tangent space if and only if $x$ is a non-singular point of $X$. A morphism of varieties induces a mapping of the tangent cones.
References
[1] | J.-i. Igusa, "Normal point and tangent cone of an algebraic variety" Mem. Coll. Sci. Univ. Kyoto , 27 (1952) pp. 189–201 MR0052155 Zbl 0101.38501 Zbl 0049.38504 |
[2] | P. Samuel, "Méthodes d'algèbre abstraite en géométrie algébrique" , Springer (1967) MR0213347 |
[3] | J. Hironaka, "Resolution of singularities of an algebraic variety over a field of characteristic zero I, II" Ann. of Math. , 79 (1964) pp. 109–203; 205–326 MR0199184 Zbl 0122.38603 |
[4] | H. Whitney, "Local properties of analytic varieties" S.S. Cairns (ed.) , Differential and Combinatorial Topol. (Symp. in honor of M. Morse) , Princeton Univ. Press (1965) pp. 205–244 MR0188486 Zbl 0129.39402 |
[5] | I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) MR0447223 Zbl 0362.14001 |
[6] | A.V. Pogorelov, "Extrinsic geometry of convex surfaces" , Amer. Math. Soc. (1972) (Translated from Russian) MR0346714 MR0244909 Zbl 0311.53067 |
[7] | R. Schneider, "Boundary structure and curvature of convex bodies" J. Tölke (ed.) J.M. Wills (ed.) , Contributions to geometry , Birkhäuser (1979) pp. 13–59 MR0568493 Zbl 0427.52003 |