Namespaces
Variants
Actions

Difference between revisions of "Non-derogatory matrix"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Category:Special matrices)
(MSC 15A18)
Line 1: Line 1:
{{TEX|done}}
+
{{TEX|done}}{{MSC|15A18}}
 +
 
 
An $(n\times m)$-matrix $A$ such that for each of its distinct eigenvalues (cf. [[Eigen value]]; [[Matrix]]) $\lambda$ there is, in its [[Jordan normal form]], only one Jordan block with that eigenvalue. A matrix $A$ is non-derogatory if and only if its [[characteristic polynomial]] and minimum polynomial (cf. [[Minimal polynomial of a matrix]]) coincide (up to a factor $\pm1$). A matrix that is not non-derogatory is said to derogatory.
 
An $(n\times m)$-matrix $A$ such that for each of its distinct eigenvalues (cf. [[Eigen value]]; [[Matrix]]) $\lambda$ there is, in its [[Jordan normal form]], only one Jordan block with that eigenvalue. A matrix $A$ is non-derogatory if and only if its [[characteristic polynomial]] and minimum polynomial (cf. [[Minimal polynomial of a matrix]]) coincide (up to a factor $\pm1$). A matrix that is not non-derogatory is said to derogatory.
  

Revision as of 21:48, 15 December 2015

2020 Mathematics Subject Classification: Primary: 15A18 [MSN][ZBL]

An $(n\times m)$-matrix $A$ such that for each of its distinct eigenvalues (cf. Eigen value; Matrix) $\lambda$ there is, in its Jordan normal form, only one Jordan block with that eigenvalue. A matrix $A$ is non-derogatory if and only if its characteristic polynomial and minimum polynomial (cf. Minimal polynomial of a matrix) coincide (up to a factor $\pm1$). A matrix that is not non-derogatory is said to derogatory.

References

[a1] J. Stoer, R. Bulirsch, "Introduction to numerical analysis" , Springer (1993) pp. 338ff
[a2] Ch.G. Cullen, "Matrices and linear transformations" , Dover, reprint (1990) pp. 236ff
How to Cite This Entry:
Non-derogatory matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Non-derogatory_matrix&oldid=34029
This article was adapted from an original article by M. Hazewinkel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article