Difference between revisions of "Hahn-Banach theorem"
(Importing text file) |
(LaTeX) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | {{TEX|done}} | |
− | + | Let $L$ be a linear manifold in a real or complex vector space $X$. Suppose $p$ is a [[semi-norm]] on $X$ and suppose $f$ is a [[linear functional]] defined on $L$ which satisfies | |
+ | \begin{equation}\label{eq:1} | ||
+ | |f(x)| \le p(x) | ||
+ | \end{equation} | ||
+ | for every $x \in L$. Then $f$ can be extended to a linear functional $F$ on all of $X$ such that | ||
+ | $$ | ||
+ | |F(x)| \le p(x) | ||
+ | $$ | ||
+ | for all $x \in X$. Such is an extension is not uniquely determined. | ||
− | + | In the case of a real space $X$ the semi-norm can be replaced by a positively-homogeneous [[subadditive function]], and the inequality \ref{eq:1} by the one-sided inequality $f(x) \le p(x)$, which remains valid for the extended functional. If $X$ is a Banach space, then for $p(x)$ one can take $\Vert f \Vert_L \cdot \Vert x \Vert$, and then $\Vert F \Vert_X = \Vert f \Vert_L$. The theorem was proved by H. Hahn (1927), and independently by S. Banach (1929). | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | In the case of a real space | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Hahn, "Ueber lineare Gleichungsysteme in linearen Räume" ''J. Reine Angew. Math.'' , '''157''' (1927) pp. 214–229</TD></TR><TR><TD valign="top">[2a]</TD> <TD valign="top"> S. Banach, "Sur les fonctionelles linéaires" ''Studia Math.'' , '''1''' (1929) pp. 211–216</TD></TR><TR><TD valign="top">[2b]</TD> <TD valign="top"> S. Banach, "Sur les fonctionelles linéaires II" ''Studia Math.'' , '''1''' (1929) pp. 223–239</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , '''1–2''' , Graylock (1957–1961) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> L.V. Kantorovich, G.P. Akilov, "Functional analysis" , Pergamon (1982) (Translated from Russian)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> H. Hahn, "Ueber lineare Gleichungsysteme in linearen Räume" ''J. Reine Angew. Math.'' , '''157''' (1927) pp. 214–229</TD></TR> | ||
+ | <TR><TD valign="top">[2a]</TD> <TD valign="top"> S. Banach, "Sur les fonctionelles linéaires" ''Studia Math.'' , '''1''' (1929) pp. 211–216</TD></TR> | ||
+ | <TR><TD valign="top">[2b]</TD> <TD valign="top"> S. Banach, "Sur les fonctionelles linéaires II" ''Studia Math.'' , '''1''' (1929) pp. 223–239</TD></TR> | ||
+ | <TR><TD valign="top">[3]</TD> <TD valign="top"> A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , '''1–2''' , Graylock (1957–1961) (Translated from Russian)</TD></TR> | ||
+ | <TR><TD valign="top">[4]</TD> <TD valign="top"> L.V. Kantorovich, G.P. Akilov, "Functional analysis" , Pergamon (1982) (Translated from Russian)</TD></TR> | ||
+ | </table> | ||
====Comments==== | ====Comments==== | ||
− | A real-valued function | + | A real-valued function $f$ is called subadditive if $f(x+y) \le f(x) + f(y)$ for all $x,y$ in its domain such that $x+y$ lies in its domain. |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Dunford, J.T. Schwartz, "Linear operators. General theory" , '''1''' , Interscience (1958)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Köthe, "Topological vector spaces" , '''1''' , Springer (1969)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Dunford, J.T. Schwartz, "Linear operators. General theory" , '''1''' , Interscience (1958)</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Köthe, "Topological vector spaces" , '''1''' , Springer (1969)</TD></TR> | ||
+ | </table> |
Latest revision as of 21:57, 20 December 2014
Let $L$ be a linear manifold in a real or complex vector space $X$. Suppose $p$ is a semi-norm on $X$ and suppose $f$ is a linear functional defined on $L$ which satisfies
\begin{equation}\label{eq:1}
|f(x)| \le p(x)
\end{equation}
for every $x \in L$. Then $f$ can be extended to a linear functional $F$ on all of $X$ such that
$$
|F(x)| \le p(x)
$$
for all $x \in X$. Such is an extension is not uniquely determined.
In the case of a real space $X$ the semi-norm can be replaced by a positively-homogeneous subadditive function, and the inequality \ref{eq:1} by the one-sided inequality $f(x) \le p(x)$, which remains valid for the extended functional. If $X$ is a Banach space, then for $p(x)$ one can take $\Vert f \Vert_L \cdot \Vert x \Vert$, and then $\Vert F \Vert_X = \Vert f \Vert_L$. The theorem was proved by H. Hahn (1927), and independently by S. Banach (1929).
References
[1] | H. Hahn, "Ueber lineare Gleichungsysteme in linearen Räume" J. Reine Angew. Math. , 157 (1927) pp. 214–229 |
[2a] | S. Banach, "Sur les fonctionelles linéaires" Studia Math. , 1 (1929) pp. 211–216 |
[2b] | S. Banach, "Sur les fonctionelles linéaires II" Studia Math. , 1 (1929) pp. 223–239 |
[3] | A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , 1–2 , Graylock (1957–1961) (Translated from Russian) |
[4] | L.V. Kantorovich, G.P. Akilov, "Functional analysis" , Pergamon (1982) (Translated from Russian) |
Comments
A real-valued function $f$ is called subadditive if $f(x+y) \le f(x) + f(y)$ for all $x,y$ in its domain such that $x+y$ lies in its domain.
References
[a1] | N. Dunford, J.T. Schwartz, "Linear operators. General theory" , 1 , Interscience (1958) |
[a2] | G. Köthe, "Topological vector spaces" , 1 , Springer (1969) |
Hahn-Banach theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hahn-Banach_theorem&oldid=15516