|
|
Line 1: |
Line 1: |
| ''category of sequences'' | | ''category of sequences'' |
| | | |
− | A particular case of the general construction of functor categories or diagram categories. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s0845601.png" /> be the set of integers equipped with the usual order relation. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s0845602.png" /> can be considered as a [[Small category|small category]] with integers as objects and all possible pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s0845603.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s0845604.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s0845605.png" />, as morphisms. The pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s0845606.png" /> is the unique morphism from the object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s0845607.png" /> to the object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s0845608.png" />. Composition of morphisms is defined as follows: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s0845609.png" />. | + | A particular case of the general construction of functor categories or diagram categories. Let $\mathbb{Z}$ be the set of integers equipped with the usual order relation. Then $\mathbb{Z}$ can be considered as a [[Small category|small category]] with integers as objects and all possible pairs $(i,j)$, where $i,j \in \mathbb{Z}$ and $i \le j$, as morphisms. The pair $(i,j)$ is the unique morphism from the object $i$ to the object $j$. Composition of morphisms is defined as follows: $(j,k)(i,j) = (i,k)$. |
| | | |
− | For an arbitrary category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s08456010.png" />, the category of functors from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s08456011.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s08456012.png" /> is called the category of sequences in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s08456013.png" />. To define a functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s08456014.png" />, it is sufficient to indicate a family of objects from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s08456015.png" />, indexed by the integers, and for each integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s08456016.png" /> to choose a morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s08456017.png" />. Then the assignment <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s08456018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s08456019.png" /> extends uniquely to a functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s08456020.png" />. A natural transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s08456021.png" /> from the functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s08456022.png" /> to a functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s08456023.png" />, i.e. a morphism in the category of sequences, is defined by a family of morphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s08456024.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s08456025.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s08456026.png" />. | + | For an arbitrary category $\mathfrak{K}$, the category of functors from $\mathbb{Z}$ to $\mathfrak{K}$ is called the category of sequences in $\mathfrak{K}$. To define a functor $F : \mathbb{Z} \rightarrow \mathfrak{K}$, it is sufficient to indicate a family of objects from $\mathfrak{K}$, indexed by the integers, and for each integer $i$ to choose a morphism $\alpha_{i,i+1} : A_i \rightarrow A_{i+1}$. Then the assignment $F(i) = A_i$, $F((i,j)) = \alpha_{i,i+1}$ extends uniquely to a functor $F : \mathbb{Z} \rightarrow \mathfrak{K}$. A natural transformation $\phi$ from the functor $F : \mathbb{Z} \rightarrow \mathfrak{K}$ to a functor $G : \mathbb{Z} \rightarrow \mathfrak{K}$, i.e. a morphism in the category of sequences, is defined by a family of morphisms $\phi_i : F(i) \rightarrow G(i)$ such that $\phi(i).G((i,i+1)) = F((i,i+1)).\phi_{i+1}$ for any $i \in \mathbb{Z}$. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s08456027.png" /> is a category with null morphisms, then in the category of sequences in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s08456028.png" /> one can isolate the [[Full subcategory|full subcategory]] of complexes, i.e. functors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s08456029.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s08456030.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s08456031.png" />. For any Abelian category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s08456032.png" /> the category of sequences and the subcategory of complexes are Abelian categories. | + | If $\mathfrak{K}$ is a category with null morphisms, then in the category of sequences in $\mathfrak{K}$ one can isolate the [[Full subcategory|full subcategory]] of complexes, i.e. functors $F : \mathbb{Z} \rightarrow \mathfrak{K}$ such that $F((i+1,i+2)).F((i,i+1)) = 0$ for any $i \in \mathbb{Z}$. For any Abelian category $\mathfrak{A}$ the category of sequences and the subcategory of complexes are Abelian categories. |
| | | |
− | Instead of the category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084560/s08456033.png" /> one can consider its subcategories of non-negative or non-positive numbers. The corresponding diagram categories are also called categories of sequences. | + | Instead of the category $\mathbb{Z}$ one can consider its subcategories of non-negative or non-positive numbers. The corresponding diagram categories are also called categories of sequences. |
| | | |
| | | |
Line 15: |
Line 15: |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. MacLane, "Homology" , Springer (1963) pp. Chapt. IX, §3</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> S. MacLane, "Homology" , Springer (1963) pp. Chapt. IX, §3</TD></TR> |
| + | </table> |
| + | |
| + | {{TEX|done}} |
Revision as of 11:18, 26 October 2014
category of sequences
A particular case of the general construction of functor categories or diagram categories. Let $\mathbb{Z}$ be the set of integers equipped with the usual order relation. Then $\mathbb{Z}$ can be considered as a small category with integers as objects and all possible pairs $(i,j)$, where $i,j \in \mathbb{Z}$ and $i \le j$, as morphisms. The pair $(i,j)$ is the unique morphism from the object $i$ to the object $j$. Composition of morphisms is defined as follows: $(j,k)(i,j) = (i,k)$.
For an arbitrary category $\mathfrak{K}$, the category of functors from $\mathbb{Z}$ to $\mathfrak{K}$ is called the category of sequences in $\mathfrak{K}$. To define a functor $F : \mathbb{Z} \rightarrow \mathfrak{K}$, it is sufficient to indicate a family of objects from $\mathfrak{K}$, indexed by the integers, and for each integer $i$ to choose a morphism $\alpha_{i,i+1} : A_i \rightarrow A_{i+1}$. Then the assignment $F(i) = A_i$, $F((i,j)) = \alpha_{i,i+1}$ extends uniquely to a functor $F : \mathbb{Z} \rightarrow \mathfrak{K}$. A natural transformation $\phi$ from the functor $F : \mathbb{Z} \rightarrow \mathfrak{K}$ to a functor $G : \mathbb{Z} \rightarrow \mathfrak{K}$, i.e. a morphism in the category of sequences, is defined by a family of morphisms $\phi_i : F(i) \rightarrow G(i)$ such that $\phi(i).G((i,i+1)) = F((i,i+1)).\phi_{i+1}$ for any $i \in \mathbb{Z}$.
If $\mathfrak{K}$ is a category with null morphisms, then in the category of sequences in $\mathfrak{K}$ one can isolate the full subcategory of complexes, i.e. functors $F : \mathbb{Z} \rightarrow \mathfrak{K}$ such that $F((i+1,i+2)).F((i,i+1)) = 0$ for any $i \in \mathbb{Z}$. For any Abelian category $\mathfrak{A}$ the category of sequences and the subcategory of complexes are Abelian categories.
Instead of the category $\mathbb{Z}$ one can consider its subcategories of non-negative or non-positive numbers. The corresponding diagram categories are also called categories of sequences.
References
[a1] | S. MacLane, "Homology" , Springer (1963) pp. Chapt. IX, §3 |
How to Cite This Entry:
Sequence category. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sequence_category&oldid=17892
This article was adapted from an original article by M.Sh. Tsalenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article