Namespaces
Variants
Actions

Difference between revisions of "Support of a module"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(Category:Associative rings and algebras)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091310/s0913101.png" /> over a commutative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091310/s0913102.png" />''
+
''$M$ over a commutative ring $R$''
  
The set of all prime ideals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091310/s0913103.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091310/s0913104.png" /> for which the localizations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091310/s0913105.png" /> of the module are non-zero (cf. [[Localization in a commutative algebra|Localization in a commutative algebra]]). This set is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091310/s0913106.png" />. It is a subset of the spectrum of the ring (cf. [[Spectrum of a ring|Spectrum of a ring]]). For example, for a finite Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091310/s0913107.png" /> regarded as a module over the ring of integers, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091310/s0913108.png" /> consists of all prime ideals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091310/s0913109.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091310/s09131010.png" /> divides the order of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091310/s09131011.png" />. For an arbitrary module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091310/s09131012.png" /> the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091310/s09131013.png" /> is empty if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091310/s09131014.png" />.
+
The set of all prime ideals $\mathfrak{p}$ of $A$ for which the localizations $M_{\mathfrak{p}}$ of the module are non-zero (cf. [[Localization in a commutative algebra|Localization in a commutative algebra]]). This set is denoted by $\mathrm{Supp}(M)$. It is a subset of the spectrum of the ring (cf. [[Spectrum of a ring|Spectrum of a ring]]). For example, for a finite Abelian group$M$ regarded as a module over the ring of integers, $\mathrm{Supp}(M)$ consists of all prime ideals $(p)$, where $p$ divides the order of $M$. For an arbitrary module $M$ the set $\mathrm{Supp}(M)$ is empty if and only if $M=0$.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Commutative algebra" , Addison-Wesley  (1972)  (Translated from French)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Commutative algebra" , Addison-Wesley  (1972)  (Translated from French)</TD></TR>
 +
</table>
 +
 
 +
{{TEX|done}}
 +
 
 +
[[Category:Associative rings and algebras]]

Latest revision as of 20:46, 18 October 2014

$M$ over a commutative ring $R$

The set of all prime ideals $\mathfrak{p}$ of $A$ for which the localizations $M_{\mathfrak{p}}$ of the module are non-zero (cf. Localization in a commutative algebra). This set is denoted by $\mathrm{Supp}(M)$. It is a subset of the spectrum of the ring (cf. Spectrum of a ring). For example, for a finite Abelian group$M$ regarded as a module over the ring of integers, $\mathrm{Supp}(M)$ consists of all prime ideals $(p)$, where $p$ divides the order of $M$. For an arbitrary module $M$ the set $\mathrm{Supp}(M)$ is empty if and only if $M=0$.

References

[1] N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French)
How to Cite This Entry:
Support of a module. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Support_of_a_module&oldid=16164
This article was adapted from an original article by L.V. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article