Namespaces
Variants
Actions

Difference between revisions of "Transposed matrix"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
The [[Matrix|matrix]] obtained from a given (rectangular or square) matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093950/t0939501.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093950/t0939502.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093950/t0939503.png" />) by interchanging the rows and the columns, that is, the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093950/t0939504.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093950/t0939505.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093950/t0939506.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093950/t0939507.png" />). The number of rows of the transposed matrix is equal to the number of columns of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093950/t0939508.png" />, while the number of columns is equal to the number of rows of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093950/t0939509.png" />. The transpose of a matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093950/t09395010.png" /> is usually denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093950/t09395011.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093950/t09395012.png" />.
+
{{TEX|done}}
 +
The [[Matrix|matrix]] obtained from a given (rectangular or square) matrix $A=\|a_{ik}\|$ ($i=1,\dots,m$; $k=1,\dots,n$) by interchanging the rows and the columns, that is, the matrix $\|a_{ik}'\|$, where $a_{ik}'=a_{ki}$ ($i=1,\dots,n$; $k=1,\dots,m$). The number of rows of the transposed matrix is equal to the number of columns of $A$, while the number of columns is equal to the number of rows of $A$. The transpose of a matrix $A$ is usually denoted by $A^T$ or $A'$.
  
  
  
 
====Comments====
 
====Comments====
Some elementary properties of the transposition of matrices are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093950/t09395013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093950/t09395014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093950/t09395015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093950/t09395016.png" />.
+
Some elementary properties of the transposition of matrices are $(A+B)^T=A^T+B^T$, $(\alpha A)^T=\alpha A^T$, $(AB)^T=B^TA^T$, $(A^{-1})^T=(A^T)^{-1}$.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  F.R. [F.R. Gantmakher] Gantmacher,  "The theory of matrices" , '''1''' , Chelsea, reprint  (1959)  pp. 19  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  F.R. [F.R. Gantmakher] Gantmacher,  "The theory of matrices" , '''1''' , Chelsea, reprint  (1959)  pp. 19  (Translated from Russian)</TD></TR></table>

Latest revision as of 16:07, 4 October 2014

The matrix obtained from a given (rectangular or square) matrix $A=\|a_{ik}\|$ ($i=1,\dots,m$; $k=1,\dots,n$) by interchanging the rows and the columns, that is, the matrix $\|a_{ik}'\|$, where $a_{ik}'=a_{ki}$ ($i=1,\dots,n$; $k=1,\dots,m$). The number of rows of the transposed matrix is equal to the number of columns of $A$, while the number of columns is equal to the number of rows of $A$. The transpose of a matrix $A$ is usually denoted by $A^T$ or $A'$.


Comments

Some elementary properties of the transposition of matrices are $(A+B)^T=A^T+B^T$, $(\alpha A)^T=\alpha A^T$, $(AB)^T=B^TA^T$, $(A^{-1})^T=(A^T)^{-1}$.

References

[a1] F.R. [F.R. Gantmakher] Gantmacher, "The theory of matrices" , 1 , Chelsea, reprint (1959) pp. 19 (Translated from Russian)
How to Cite This Entry:
Transposed matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Transposed_matrix&oldid=15848
This article was adapted from an original article by O.A. Ivanova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article