Difference between revisions of "Integral sine"
(Importing text file) |
(TeX) |
||
Line 1: | Line 1: | ||
− | The special function defined for real | + | {{TEX|done}} |
+ | The special function defined for real $x$ by | ||
− | + | $$\operatorname{Si}(x)=\int\limits_0^x\frac{\sin t}{t}dt.$$ | |
− | For | + | For $x>0$ one has |
− | + | $$\operatorname{Si}(x)=\frac\pi2-\int\limits_x^\infty\frac{\sin t}{t}dt.$$ | |
One sometimes uses the notation | One sometimes uses the notation | ||
− | + | $$\operatorname{si}(x)=-\int\limits_x^\infty\frac{\sin t}{t}dt\equiv\operatorname{Si}(x)-\frac\pi2.$$ | |
Some particular values are: | Some particular values are: | ||
− | + | $$\operatorname{Si}(0)=0,\quad\operatorname{Si}(\infty)=\frac\pi2,\quad\operatorname{si}(\infty)=0.$$ | |
Some special relations: | Some special relations: | ||
− | + | $$\operatorname{Si}(-x)=-\operatorname{Si}(x);\quad\operatorname{si}(x)+\operatorname{si}(-x)=-\pi;$$ | |
− | + | $$\int\limits_0^\infty\operatorname{si}^2(t)dt=\frac\pi2;\quad\int\limits_0^\infty e^{-pt}\operatorname{si}(qt)dt=-\frac1p\arctan\frac pq;$$ | |
− | + | $$\int\limits_0^\infty\sin t\operatorname{si}(t)dt=-\frac\pi4;\quad\int\limits_0^\infty\operatorname{Ci}(t)\operatorname{si}(t)dt=-\ln2,$$ | |
− | where | + | where $\operatorname{Ci}(t)$ is the [[Integral cosine|integral cosine]]. For $x$ small, |
− | + | $$\operatorname{Si}(x)\approx x.$$ | |
− | The asymptotic representation for large | + | The asymptotic representation for large $x$ is |
− | + | $$\operatorname{Si}(x)=\frac\pi2-\frac{\cos x}{x}P(x)-\frac{\sin x}{x}Q(x),$$ | |
where | where | ||
− | + | $$P(x)\sim\sum_{k=0}^\infty\frac{(-1)^k(2k)!}{x^{2k}},$$ | |
− | + | $$Q(x)\sim\sum_{k=0}^\infty\frac{(-1)^k(2k+1)!}{x^{2k+1}}.$$ | |
The integral sine has the series representation | The integral sine has the series representation | ||
− | + | $$\operatorname{Si}(x)=x-\frac{x^3}{3!3}+\ldots+(-1)^k\frac{x^{2k+1}}{(2k+1)!(2k+1)}+\ldots.\tag{*}$$ | |
− | As a function of the complex variable | + | As a function of the complex variable $z$, $\operatorname{Si}(z)$, defined by \ref{*}, is an entire function of $z$ in the $z$-plane. |
− | The integral sine is related to the [[Integral exponential function|integral exponential function]] | + | The integral sine is related to the [[Integral exponential function|integral exponential function]] $\operatorname{Ei}(z)$ by |
− | + | $$\operatorname{si}(z)=\frac{1}{2i}[\operatorname{Ei}(iz)-\operatorname{Ei}(-iz)].$$ | |
See also [[Si-ci-spiral|Si-ci-spiral]]. | See also [[Si-ci-spiral|Si-ci-spiral]]. |
Revision as of 17:47, 5 August 2014
The special function defined for real $x$ by
$$\operatorname{Si}(x)=\int\limits_0^x\frac{\sin t}{t}dt.$$
For $x>0$ one has
$$\operatorname{Si}(x)=\frac\pi2-\int\limits_x^\infty\frac{\sin t}{t}dt.$$
One sometimes uses the notation
$$\operatorname{si}(x)=-\int\limits_x^\infty\frac{\sin t}{t}dt\equiv\operatorname{Si}(x)-\frac\pi2.$$
Some particular values are:
$$\operatorname{Si}(0)=0,\quad\operatorname{Si}(\infty)=\frac\pi2,\quad\operatorname{si}(\infty)=0.$$
Some special relations:
$$\operatorname{Si}(-x)=-\operatorname{Si}(x);\quad\operatorname{si}(x)+\operatorname{si}(-x)=-\pi;$$
$$\int\limits_0^\infty\operatorname{si}^2(t)dt=\frac\pi2;\quad\int\limits_0^\infty e^{-pt}\operatorname{si}(qt)dt=-\frac1p\arctan\frac pq;$$
$$\int\limits_0^\infty\sin t\operatorname{si}(t)dt=-\frac\pi4;\quad\int\limits_0^\infty\operatorname{Ci}(t)\operatorname{si}(t)dt=-\ln2,$$
where $\operatorname{Ci}(t)$ is the integral cosine. For $x$ small,
$$\operatorname{Si}(x)\approx x.$$
The asymptotic representation for large $x$ is
$$\operatorname{Si}(x)=\frac\pi2-\frac{\cos x}{x}P(x)-\frac{\sin x}{x}Q(x),$$
where
$$P(x)\sim\sum_{k=0}^\infty\frac{(-1)^k(2k)!}{x^{2k}},$$
$$Q(x)\sim\sum_{k=0}^\infty\frac{(-1)^k(2k+1)!}{x^{2k+1}}.$$
The integral sine has the series representation
$$\operatorname{Si}(x)=x-\frac{x^3}{3!3}+\ldots+(-1)^k\frac{x^{2k+1}}{(2k+1)!(2k+1)}+\ldots.\tag{*}$$
As a function of the complex variable $z$, $\operatorname{Si}(z)$, defined by \ref{*}, is an entire function of $z$ in the $z$-plane.
The integral sine is related to the integral exponential function $\operatorname{Ei}(z)$ by
$$\operatorname{si}(z)=\frac{1}{2i}[\operatorname{Ei}(iz)-\operatorname{Ei}(-iz)].$$
See also Si-ci-spiral.
For references, and the graph of the integral sine, see Integral cosine.
Comments
This function is better known as the sine integral.
Integral sine. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integral_sine&oldid=11622