User:Ulf Rehmann/TEST7
Markup: .BDIS {A15} p \eql {fnnme max} from {1 \leq i \leq n} {{left \Lmi {b sub i \mns \sum from {j \eql 1} to n a sub {ij} {x hat} sub j} right \Rmi} over {BN \pls AN \cdt \sum from {j \eql 1} to n left \Lmi {{x hat} sub j} right \Rmi}} , .EDIS TeX Code: \$\$ \tag{A15} p = \displaystyle\max _ {1 <= i <= n} {{\left | {b _ i - \sum _ {j = 1} ^ n a _ {ij} {\hat x} _ j} \right |} \over {BN + AN \cdot \sum _ {j = 1} ^ n \left | {{\hat x} _ j} \right |}} , \$\$
TeX Code displayed from this a110010108.png $$ \tag{A15} p = \displaystyle\max _ {1 <= i <= n} {{\left | {b _ i - \sum _ {j = 1} ^ n a _ {ij} {\hat x} _ j} \right |} \over {BN + AN \cdot \sum _ {j = 1} ^ n \left | {{\hat x} _ j} \right |}} , $$
Markup: \BMI H sub {\FgA / \FgA sub 1} \LpaA,\sph B\Rpa \EMI TeX Code: \$ H _ {\mathfrak A / \mathfrak A _ 1} (A,\, B) \$
TeX rendered (inline) $ H _ {\mathfrak A / \mathfrak A _ 1} (A,\, B) $ from this a01020061.png
Markup: \BMI fnnme Spec \sph \FbZ \Lbk 1 / n ,\sph \Gxi sub n \Rbk\EMI TeX Code: \$ {\operatorname\Spec} \, \mathbf Z [ 1 / n ,\, \xi _ n ] \$
TeX rendered (inline) $ {\operatorname\Spec} \, \mathbf Z [ 1 / n ,\, \xi _ n ] $ from this m06451074.png
Markup: .BDIS \Gba \Lpa \FfA, \FfB \Rpa \eql {fnnme sup} from {C \seo \FfA \otm \FfB} left \Lmi {\FsP sub {\FfA \otm \FfB} \Lpa C \Rpa \mns \Lpa \FsP sub \FfA \tms \FsP sub \FfB \Rpa \Lpa C \Rpa} right \Rmi .CDIS {@\eql@} {1 over 2} {fnnme sup} \sum from {i \eql 1} to I \sum from {j \eql 1} to J left \Lmi {\FsP \Lpa A sub i \cap B sub j \Rpa \mns \FsP \Lpa A sub i \Rpa \FsP \Lpa B sub j \Rpa} right \Rmi , .EDIS TeX Code: \$\S \beta ( \mathcal A, \mathcal B ) = \displaystyle\sup _ {C \in \mathcal A \otimes \mathcal B} \left | {\mathrm P _ {\mathcal A \otimes \mathcal B} ( C ) - ( \mathrm P _ \mathcal A - \mathrm P _ \mathcal B ) ( C )} \right | = \$\$ \$\$ = {1 \over 2} \displaystyle\sup \sum _ {i = 1} ^ I \sum _ {j = 1} ^ J \left | {\mathrm P ( A _ i \cap B _ j ) - \mathrm P ( A _ i ) \mathrm P ( B _ j )} \right | , \$\$
TeX Code displayed from this a11006022.png and this a11006023.png $$ \beta ( \mathcal A, \mathcal B ) = \displaystyle\sup _ {C \in \mathcal A \otimes \mathcal B} \left | {\mathrm P _ {\mathcal A \otimes \mathcal B} ( C ) - ( \mathrm P _ \mathcal A - \mathrm P _ \mathcal B ) ( C )} \right | = $$
$$ = {1 \over 2} \displaystyle\sup \sum _ {i = 1} ^ I \sum _ {j = 1} ^ J \left | {\mathrm P ( A _ i \cap B _ j ) - \mathrm P ( A _ i ) \mathrm P ( B _ j )} \right | , $$
Ulf Rehmann/TEST7. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ulf_Rehmann/TEST7&oldid=44222