Namespaces
Variants
Actions

Pell equation

From Encyclopedia of Mathematics
Jump to: navigation, search

A Diophantine equation (cf. Diophantine equations) of the form

as well as the more general equation

x^2-dy^2=c,\label{2}

where d is a positive integer, \sqrt d is an irrational number, c is an integer, and the unknowns x and y are integers.

If P_s/Q_s, s=0,1,\ldots, are the convergent fractions for the expansion of \sqrt d in a continued fraction with period k, then the positive solutions to \ref{1} take the form

x=P_{kn-1},\quad y=Q_{kn-1},

where n is any natural number such that kn is even.

All the solutions to \ref{1} are derived from the formula

x+y\sqrt d=\pm(x_0+y_0\sqrt d)^n,

where n is any integer and (x_0,y_0) is the solution with the least positive values for the unknowns. The general equation \ref{2} either has no solutions at all or has infinitely many. For c=-1, solutions exist if and only if k is odd. For c=4, \ref{2} always has solutions. The solutions to the Pell equation for c=\pm1,\pm4 are used in determining the units of the quadratic field R(\sqrt d). The solutions to a Pell equation are used to determine automorphisms of a binary quadratic form Ax^2+Bxy+Cy^2; these enable one to use one solution to the Diophantine equation Ax^2+Bxy+Cy^2=n to obtain an infinite set of solutions.

Equation (1) was examined by W. Brouncker (1657), P. Fermat and J. Wallis. L. Euler, on account of a misunderstanding, ascribed it to J. Pell.

References

[1] A.Z. Walfisz, "Pell's equation" , Tbilisi (1952) (In Russian)
[2] A.D. Gel'fond, "The solution of equations in integers" , Noordhoff (1960) (Translated from Russian)
[3] W.J. Leveque, "Topics in number theory" , 1 , Addison-Wesley (1965)


Comments

References

[a1] G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Clarendon Press (1979)
How to Cite This Entry:
Pell equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pell_equation&oldid=31941
This article was adapted from an original article by A.A. Bukhshtab (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article