Matrix variate elliptically contoured distribution
The class of matrix variate elliptically contoured distributions can be defined in many ways. Here the definition of A.K. Gupta and T. Varga [a4] is given.
A random matrix (see Matrix variate distribution) is said to have a matrix variate elliptically contoured distribution if its characteristic function has the form \phi _ { X } ( T ) = \operatorname { etr } ( i T ^ { \prime } M ) \psi ( \operatorname { tr } ( T ^ { \prime } \Sigma T \Phi ) ) with T a ( p \times n )-matrix, M a ( p \times n )-matrix, \Sigma a ( p \times p )-matrix, \Phi a ( n \times n )-matrix, \Sigma \geq 0, \Phi \geq 0 and \psi : [ 0 , \infty ) \rightarrow \mathbf{R}. This distribution is denoted by E _ { p , n } ( M , \Sigma \otimes \Phi , \psi ). If the distribution of X is absolutely continuous (cf. also Absolute continuity), then its probability density function (cf. also Density of a probability distribution) has the form
\begin{equation*} | \Sigma | ^ { - n / 2 } | \Phi | ^ { - p / 2 } h ( \operatorname { tr } \left( ( X - M ) ^ { \prime } \Sigma ^ { - 1 } ( X - M ) \Phi ^ { - 1 } ) \right), \end{equation*}
where h and \psi determine each other.
An important subclass of the class of matrix variate elliptically contoured distributions is the class of matrix variate normal distributions. A matrix variate elliptically contoured distribution has many properties which are similar to the normal distribution. For example, linear functions of a random matrix with a matrix variate elliptically contoured distribution also have elliptically contoured distributions. That is, if X \sim E _ { p , n } ( M , \Sigma \otimes \Phi , \psi ), then for given constant matrices C ( q \times n ), A ( q \times p ), B ( n \times m ), A X B + C \sim E _ { q , n } ( A M B + C , ( A \Sigma A ^ { \prime } ) \otimes ( B ^ { \prime } \Phi B ) , \psi ).
If X, M and \Sigma are partitioned as
\begin{equation*} X = \left( \begin{array} { l } { X _ { 1 } } \\ { X _ { 2 } } \end{array} \right) , M = \left( \begin{array} { c } { M _ { 1 } } \\ { M _ { 2 } } \end{array} \right) , \Sigma = \left( \begin{array} { l l } { \Sigma _ { 11 } } & { \Sigma _ { 12 } } \\ { \Sigma _ { 21 } } & { \Sigma _ { 22 } } \end{array} \right), \end{equation*}
where X _ { 1 } is a ( q \times n )-matrix, M _ { 1 } is a ( q \times n )-matrix and \Sigma _ { 11 } is a ( q \times q )-matrix, q < p, then X _ { 1 } \sim E _ { q ,\, n } ( M _ { 1 } , \Sigma _ { 11 } \otimes \Phi , \psi ). However, if X, M and \Phi are partitioned as
\begin{equation*} X = ( X _ { 1 } , X _ { 2 } ) , M = ( M _ { 1 } , M _ { 2 } ) , \Phi = \left( \begin{array} { c c } { \Phi _ { 11 } } & { \Phi _ { 12 } } \\ { \Phi _ { 21 } } & { \Phi _ { 22 } } \end{array} \right), \end{equation*}
where X _ { 1 } is a ( p \times m )-matrix, M _ { 1 } is a ( p \times m )-matrix, and \Phi _ { 11 } is an ( m \times m )-matrix, m < n, then X _ { 1 } \sim E _ { p , m } ( M _ { 1 } , \Sigma \otimes \Phi _ { 11 } , \psi ).
Here, if the expectations exist, then \mathsf{E} ( X ) = M and \operatorname { cov } ( X ) = c \Sigma \otimes \Phi, where c = - 2 \psi ^ { \prime } ( 0 ). An important tool in the study of matrix variate elliptically contoured distributions is the stochastic representation of X:
\begin{equation*} X : = M + r A U B ^ { \prime }, \end{equation*}
where \operatorname{rank} ( \Sigma ) = p _ { 1 }, \operatorname{rank} ( \Phi ) = n _ { 1 }, U is a ( p _ { 1 } \times n _ { 1 } )-matrix and \overset{\rightharpoonup} { f n n m e } ( U ^ { \prime } ) is uniformly distributed on the unit sphere in \mathbf{R} ^ { p_1 n_1 } , r is a non-negative random variable, r and U are independent, \Sigma = A A ^ { \prime }, and \Phi = B B ^ { \prime }. Moreover,
\begin{equation*} \psi ( u ) = \int _ { 0 } ^ { \infty } \Omega _ { p _ { 1 } n _ { 1 } } ( r ^ { 2 } u ) d F ( r ) , u \geq 0, \end{equation*}
where \Omega _ { p _ { 1 } n _ { 1 } } ( t ^ { \prime } t ^ { \prime } ), t \in {\bf R} ^ { p _ { 1 } n _ { 1 } } denotes the characteristic function of \overset{\rightharpoonup} { f n n m e } ( U ^ { \prime } ), and F ( r ) denotes the distribution function of r.
References
[a1] | K.T. Fang, Y.T. Zhang, "Generalized multivariate analysis" , Springer (1990) |
[a2] | K.T. Fang, T.W. Anderson, "Statistical inference in elliptically contoured and related distributions" , Allerton Press (1990) |
[a3] | A.K. Gupta, T. Varga, "Rank of a quadratic form in an elliptically contoured matrix random variable" Statist. Probab. Lett. , 12 (1991) pp. 131–134 |
[a4] | A.K. Gupta, T. Varga, "Elliptically contoured models in statistics" , Kluwer Acad. Publ. (1993) |
[a5] | A.K. Gupta, T. Varga, "Some applications of the stochastic representation of elliptically contoured distribution" Random Oper. and Stoch. Eqs. , 2 (1994) pp. 1–11 |
[a6] | A.K. Gupta, T. Varga, "A new class of matrix variate elliptically contoured distributions" J. Italian Statist. Soc. , 3 (1994) pp. 255–270 |
[a7] | A.K. Gupta, T. Varga, "Moments and other expected values for matrix variate elliptically contoured distributions" Statistica , 54 (1994) pp. 361–373 |
[a8] | A.K. Gupta, T. Varga, "Normal mixture representation of matrix variate elliptically contoured distributions" Sankhyā Ser. A , 57 (1995) pp. 68–78 |
[a9] | A.K. Gupta, T. Varga, "Some inference problems for matrix variate elliptically contoured distributions" Statistics , 26 (1995) pp. 219–229 |
[a10] | A.K. Gupta, T. Varga, "Characterization of matrix variate elliptically contoured distributions" , Adv. Theory and Practice of Statistics: A Volume in Honor of Samuel Kotz , Wiley (1997) pp. 455–467 |
Matrix variate elliptically contoured distribution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Matrix_variate_elliptically_contoured_distribution&oldid=55355