# Lojasiewicz inequality

2010 Mathematics Subject Classification: Primary: 14P15 Secondary: 14P05 [MSN][ZBL]

An inequality on real analytic functions proved by S. Lojasiewicz in [Lo] (see also Liouville-Lojasiewicz inequality). One form of the inequality states the following.

Theorem 1 Consider an open set $U\subset \mathbb R^n$ and an analytic function $f:U \to \mathbb R$. Let $Z_f$ denote the zeros of $f$. Then for every compact set $K\subset U$ there are positive constants $\alpha$ and $C$ such that \begin{equation}\label{e:Loj1} {\rm dist}\, (x, Z_f)^\alpha \leq C |f(x)| \qquad \qquad \forall x \in K. \end{equation}

A different form of the inequality is often used in analysis and is also called Lojasiewicz inequality (sometimes Lojasiewicz gradient inequality)

Theorem 2 Let $U$ and $f$ be as above. For every critical point $x\in U$ of $f$ there is a neighborhood $V$ of $x$, an exponent $\theta\in [\frac{1}{2},1[$ and a constant $C$ such that \begin{equation}\label{e:Loj2} |f(x)-f(y)|^\theta \leq C |\nabla f (y)| \qquad \qquad \forall y\in V\, . \end{equation}

Observe that

• If we know \eqref{e:Loj2}, we can remove the constant $C$ by restricting the inequality to a smaller neighborhood $W$ of $x$ and substituing $\theta$ with a larger exponent. However, the inequality is usually stated as above since in several applications it is convenient to have the smallest possible exponent $\theta$.
• For $n=1$ it is very easy to prove both \eqref{e:Loj1} and \eqref{e:Loj2} using the power expansion of $f$. More precisely, if the function is not constant, then there is a smallest $N\geq 1$ such that $f^{(N)} (x)\neq 0$. We can then write

$f(y) - f(x) = \sum_{k\geq N} \frac{f^{(k)} (x)}{k!} (y-x)^k$ for $y$ in a neighborhood of $x$. Choosing $r$ sufficiently small we easily conclude $2 \left|\frac{f^{(N)} (x)}{N!}\right| |y-x|^N\geq |f(y) - f(x)| \geq \frac{1}{2}\left|\frac{f^{(N)} (x)}{N!}\right| |y-x|^N \qquad \forall y\in ]x-r, x+r[\, .$ Next, assuming that $f' (x) = 0$ (i.e. $N>1$) we also conclude, for $r$ sufficiently small $|f'(y)|\geq \frac{1}{2} \left|\frac{f^{(N)} (x)}{(N-1)!}\right| |y-x|^{N-1}$ and we conclude \eqref{e:Loj2} with $\theta = \frac{N-1}{N}$ The inequalities are however rather difficult to prove when $n>1$.

• The classical example of a $C^\infty$ function which is not real analytic shows that the analyticity assumption is necessary. Indeed consider

$f(x) =\left\{ \begin{array}{ll} e^{-\frac{1}{|x|}} \qquad&\mbox{for } x\neq 0\\ 0 &\mbox{for } x=0 \end{array}\right.$ It can be easily checked that $f\in C^\infty$ and that $Z_f = \{0\}$. It is also obvious that \eqref{e:Loj1} fails in any neighborhood of $0$ and that Theorem 2 does not hold at $x=0$.

Remark 3 Further important remarks:

• By the argument above we draw the important conclusion that the exponent $\theta$ in \eqref{e:Loj2} is necessarily not smaller than $\frac{1}{2}$.
• The inequality \eqref{e:Loj2} can be shown to hold with $\theta = \frac{1}{2}$ when $D^2 f (x)$ is invertible, i.e. $x$ is a non-degenerate critical point: the inequality is indeed a simple consequence of the Morse lemma and the analyticity assumption is superfluous ($f\in C^2$ is sufficient to apply the Morse lemma).

#### Applications

The Lojasiewicz inequality has found rather striking applications in the theory of ordinary and partial differential equations, in particular to gradient flows. In a finite-dimensional context, a gradient flow is sometimes called gradient dynamical system and consists of a system of ordinary differential equations of the form \begin{equation}\label{e:gradient_flow} \dot{x} (t) = - \nabla f (x(t))\, . \end{equation} The following lemma of Lojasiewicz (see [Lo2]) then holds

Lemma 4 Assume $U\subset \mathbb R^n$ is open, $f: U \to \mathbb R$ is a $C^2$ function and $x:[0, \infty[\to U$ is a solution of \eqref{e:gradient_flow}. Assume the existence of a sequence $t_n\to \infty$ such that $x (t_n)$ converges to a critical point $\bar{x}$ of $f$ which satisfies \eqref{e:Loj2} for some $\theta \in ]0,1[$ in some neighborhood $V$. Then $\lim_{t\to \infty} x(t) = \bar{x}\, .$

Thus, from Theorem 2 we conclude the following important corollary

Corollary 5 Assume $f:\mathbb R^n \to \mathbb R$ is real analytic and let $x:[0,\infty[\to \mathbb R^n$ be a solution of \eqref{e:gradient_flow}. Then, either $\lim_{t\to\infty} |x(t)| = \infty$ or there exists $\bar{x}$ critical point of $f$ such that $\lim_{t\to\infty} x(t) = \bar{x}\, .$

It was realized by L. Simon in his pioneering work [Si] that under appropriate ellipticity assumptions the Lojasiewicz inequality can be extended to an infinite-dimensional setting. He then used it to study

• the asymptotic behavior of solutions to parabolic equations
• the asymptotic behavior of solutions to geometric variational problems near an isolated singular point.

For this reason, suitable infinite-dimensional versions of \eqref{e:Loj2} (which can be reduced to Theorem 2 using a Lyapunov-Schmidt reduction, see [Si2]) are often called Lojasiewicz-Simon inequalities.

Remark 6 Corollary 5 can be shown to fail under the assumption $f\in C^\infty$. The exponent $\theta$ in \eqref{e:Loj2} is related to the rate of convergence of $x(t)$ to $\bar{x}$ in Lemma 4. In particular, if $\theta = \frac{1}{2}$, then it can be shown that $|x(t) - \bar{x}|\leq e^{- \bar{C} t}\,$ for some $\bar{C}>0$. If $\theta > \frac{1}{2}$, then it can be shown that $|x(t)-\bar{x}| \leq \frac{\bar{C}}{t^\alpha}\, ,$ where the epxonent $\alpha$ can be explicitly computed from $\theta$. Cf. [Si2].

How to Cite This Entry:
Lojasiewicz inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lojasiewicz_inequality&oldid=51341