# Linear summation method

A summation method (cf. Summation methods) having the properties of linearity:

1) if the series $\sum_{k=0}^\infty a_k$ is summable by the summation method to the sum $A$, then the series $\sum_{k=0}^\infty ca_k$ is summable by this method to the sum $cA$;

2) if the series $\sum_{k=0}^\infty a_k$, $\sum_{k=0}^\infty b_k$ are summable by the summation method to $A$ and $B$ respectively, then the series $\sum_{k=0}^\infty(a_k+b_k)$ is summable by this method to the sum $A+B$.

All most widespread summation methods are linear; in particular, a matrix summation method and a semi-continuous summation method. There are non-linear summation methods. For example, the method in which summability of a series to the sum $S$ is defined by the existence of the limit $S$ of the sequence $\{T_n\}$, where

$$T_n=\frac{s_{n+1}s_{n-1}-s_n^2}{s_{n+1}+s_{n-1}-2s_n}$$

($s_n$ are the partial sums of the series), is not linear.

How to Cite This Entry:
Linear summation method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Linear_summation_method&oldid=34458
This article was adapted from an original article by I.I. Volkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article