Kummer criterion
From Encyclopedia of Mathematics
2020 Mathematics Subject Classification: Primary: 40A05 [MSN][ZBL]
A general convergence criterion for series with positive terms, proposed by E. Kummer. Let be a series of positive numbers and \{c_n\} a sequence of positive numbers. If there are \delta >0 and N such that K_n := c_n \frac{a_n}{a_{n+1}} - c_{n+1} \geq \delta \qquad \forall n\geq N\, , then \eqref{e:series} converges. If the series \sum_n (c_n)^{-1} diverges and there is N such that K_n \leq 0 for all n\geq N, then \eqref{e:series} diverges.
An obvious corollary is that, when the limit K := \lim_{n\to \infty} K_n exists we have:
- if K>0 \eqref{e:series} converges
- if K<0 and \sum_n (c_n)^{-1} diverges, then \eqref{e:series} diverges.
References
[Fi] | G.M. Fichtenholz, "Differential und Integralrechnung" , 1 , Deutsch. Verlag Wissenschaft. (1964) |
[Ra] | E.D. Rainville, "Infinite series" , Macmillan (1967) |
How to Cite This Entry:
Kummer criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kummer_criterion&oldid=30925
Kummer criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kummer_criterion&oldid=30925
This article was adapted from an original article by E.G. Sobolevskaya (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article