Invertible element
of a semi-group with identity
An element for which there exists an element y such that xy=1 (right invertibility) or yx=1 (left invertibility). If an element is invertible on both the right and the left, it is called two-sidedly invertible (often simply invertible). The set G(S) of all elements with a two-sided inverse in a semi-group S with identity is the largest subgroup in S that contains the identity. A bicyclic semi-group provides an example of the existence of elements that are invertible only on the right or only on the left; in addition, the existence of such elements in a semi-group S implies the existence in S of a bicyclic sub-semi-group with the same identity as S. An alternative situation is that in which every element in S with a one-sided inverse has a two-sided inverse; this holds if and only if either S=G(S) or if S\setminus G(S) is a sub-semi-group (being, clearly, the largest ideal in S); such a semi-group is called a semi-group with isolated group part. The following are examples of semi-groups with isolated group part: every finite semi-group with identity, every commutative semi-group with identity, every semi-group with two-sided cancellation and identity, and every multiplicative semi-group of complex matrices containing the identity matrix.
References
[1] | A.H. Clifford, G.B. Preston, "Algebraic theory of semi-groups" , 1 , Amer. Math. Soc. (1961) |
[2] | E.S. Lyapin, "Semigroups" , Amer. Math. Soc. (1974) (Translated from Russian) |
Invertible element. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Invertible_element&oldid=32506