Croke isoperimetric inequality
Let be a bounded domain in a complete Riemannian manifold M = M ^ { n } with smooth boundary \partial \Omega. A unit vector v \in T _ { p } M is said to be a direction of visibility at p \in \Omega if the arc of the geodesic ray t \mapsto \gamma ( t ) = \operatorname { exp } _ { p } ( t v ) from p up to the first boundary point \gamma ( s ) \in \partial \Omega is the shortest connection between the points p and \gamma ( s ), i.e. s = \operatorname { dist } ( p , \gamma ( s ) ). Let \Omega _ { p } \subset T _ { p } M be the set of directions of visibility at p and define the minimum visibility angle of \Omega by
\begin{equation*} \omega = \operatorname { inf } _ { p \in \Omega } \frac { \operatorname { Vol} ( \Omega _ { p } ) } { \alpha ( n - 1 ) }, \end{equation*}
where \alpha ( k ) = \operatorname{Vol} ( S ^ { k } ).
Then the following inequalities hold:
\begin{equation} \tag{a1} \frac { \text { Vol } ( \partial \Omega ) } { \text { Vol } ( \Omega ) } \geq \frac { c _ { 1 } } { \operatorname { diam } \Omega } \cdot \omega , \quad c_ { 1 } = \frac { 2 \pi \alpha ( n - 1 ) } { \alpha ( n ) }, \end{equation}
\begin{equation} \tag{a2} \frac { \operatorname {Vol} ( \partial \Omega ) ^ { n } } { \operatorname {Vol} ( \Omega ) ^ { n - 1 } } \geq c _ { 2 } \cdot \omega ^ { n + 1 } , \quad c _ { 2 } = \frac { \alpha ( n - 1 ) ^ { n } } { \left( \frac { \alpha ( n ) } { 2 } \right) ^ { n - 1 } }. \end{equation}
Both inequalities (a1) and (a2) are sharp in the sense that equality holds if and only if \omega = 1 and \Omega is a hemi-sphere of a sphere of constant positive curvature.
In the proof of the second inequality, special versions of the Berger inequality and the Kazdan inequality are used.
References
[a1] | I. Chavel, "Riemannian geometry: A modern introduction" , Cambridge Univ. Press (1995) |
[a2] | C.B. Croke, "Some isoperimetric inequalities and eigenvalue estimates" Ann. Sci. Ecole Norm. Sup. , 13 (1980) pp. 419–435 |
Croke isoperimetric inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Croke_isoperimetric_inequality&oldid=50148