Cosecant
One of the trigonometric functions:
$$y=\operatorname{cosec}x=\frac{1}{\sin x};$$
other notations are $\csc x$, $\operatorname{cosc}x$. The domain of definition is the entire real line with the exception of the points with abscissas
$$x=\pi n,\quad n=0,\pm1,\pm2,\mathinner{\ldotp\ldotp\ldotp\ldotp}$$
The cosecant is an unbounded odd periodic function (with period $2\pi$). Its derivative is:
$$(\operatorname{cosec}x)'=-\frac{\cos x}{\sin^2x}=-\operatorname{cotg}x\operatorname{cosec}x.$$
The integral of the cosecant is:
$$\int\operatorname{cosec}x\,dx=\ln\left|\operatorname{tg}\frac x2\right|+C.$$
The series expansion is:
$$\operatorname{cosec}x=\frac1x+\frac x6+\frac{7x^3}{360}+\frac{31x^5}{15120}+\dotsb,\quad0<|x|<\pi.$$
Comments
See also Sine.
Cosecant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cosecant&oldid=44646