Continuous flow
2010 Mathematics Subject Classification: Primary: 37A10 [MSN][ZBL]
A continuous flow in ergodic theory is a family (where
ranges over the real axis
) of automorphisms modulo 0 of a measure space
such that: a)
for any
and all
, except possibly for a set of
belonging to an exceptional set of measure 0 (which may depend on
and
); in other words,
; b) for each measurable set
the measure of the symmetric difference
depends continuously on
. Let
be the set of all automorphisms modulo 0 of the space
with the usual identification: if
and
coincide almost-everywhere, then they determine the same element of
. If
is endowed with the weak topology (see ), then b) means that the mapping
that takes
to
is continuous.
If is a Lebesgue space, then the concept of a continuous flow is practically the same as that of a measurable flow: The latter is always a continuous flow (see ), and for any continuous flow
there is a measurable flow
such that
for all
(see ; a related result is proved in , but see also the correction in ). The converse to any of these results depends on the character of the problem in question and the methods used.
In another sense the term "continuous flow" can be used to emphasize that the flow is considered in the context of topological dynamics. In this meaning a continuous flow is a collection of homeomorphisms of a topological space
such that
for all
and
; the mapping
taking
to
is continuous.
To avoid confusion with 1) it is better to talk in this case of a topological flow and in the case of 1) of a metric continuity.
References
[Ha] | P.R. Halmos, "Lectures on ergodic theory" , Math. Soc. Japan (1956) MR0097489 Zbl 0073.09302 |
[Ho] | E. Hopf, "Ergodentheorie" , Springer (1970) MR0024581 Zbl 0185.29001 |
[V] | A.M. Vershik, "Measurable realization of continuous automorphism groups of a unitary ring" Izv. Akad. Nauk. SSSR Ser. Mat. , 29 : 1 (1965) pp. 127–136 Zbl 0194.16302 |
[M] | G.W. Mackey, "Point realizations of transformation groups" Illinois J. Math. , 6 : 2 (1962) pp. 327–335 MR0143874 Zbl 0178.17203 |
[R] | A. Ramsay, "Virtual groups and group actions" Advances in Math. , 6 : 3 (1971) pp. 253–322 MR0281876 Zbl 0216.14902 Zbl 1085.54027 |
Continuous flow. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Continuous_flow&oldid=26395